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In order to gain insight into the role of substructure in complex systems we investigate
attractor neural network models with substructure. Partially subdivided neural networks enable
the storage of highly correlated states, and may also be useful as amodel for brain function. Two
possible biological examples are the separation of color, shape and motion in visual processing,
and the use of parts of speech in language. With this motivation we anayze the ability of
partially subdivided attractor networks to store both imprinted neural states and composite states
formed out of combinations of imprinted subnetwork states. As the strength of intersubnetwork
synapses are reduced more combinations of imprinted substates are recalled by the network. We
perform a mean field analysis of the stability of composite patterns. Analytic solution of the
equations at zero temperature show how stability of a particular composite pattern is controlled
by the number of subdivisions that represent each imprinted pattern. Numerical minimization of
the free energy is used to obtain the phase transition diagrams for networks with 2, 3 or 4
subdivisions.

l. Introduction
Many complex systems have the property that they are formed from substructures that extend

to essentially the same scale as the whole system. The brain is segregated into hemispheres and
lobes and further divided into functional regions. The human body has physiological systems
further divided into organs. Proteins are often organized out of several amino acid chains with
substructure formed of a-helices and b-sheets. Life on earth, considered as a complex system, is
divided among climates, ecosystems, habitats and species. Global weather patterns are formed
out of large scale air and ocean currents, storms and regions of high and low pressure. In al of
these systems the largest scale of subdivision comprises fewer than 100 parts, and more typically
of order 10 parts of the whole system. For biological systems, particularly biological organisms,
the explanation of the substructure must originate from the advantages that accrue to the system
from its presence. Our ultimate objective is to understand the role of functional and structural
subdivision in complex systems.

In this manuscript we begin a systematic investigation of the properties of partialy
subdivided neural networks. The advantages of subdivided networks may be considered in the



context of pattern recognition tasks, the storage of correlated information and as a mechanism for
generalization from a small number of training examples. Subdivided networks also are a model
for the functional structure of the brain. Our construction of partially subdivided networks
consists of a conventional network of N neurons with Hebbian learning where the strength of
synapses between q subdivisions of N/q neurons are reduced by a factor g compared to the
synapses between neurons within each subnetwork. We expect systematic dilution of inter-
subnetwork synapses, with g the fraction of remaining synapses, to lead to similar results.

This paper is organized as follows. Section Il provides a brief review of related research on
neural networks. Section 11 describes qualitatively the properties and possible advantages of
subdivided networks. Section 1V is the main body of this article where the mean field equations
for the subdivided networks are derived. They are solved analytically for a particular class of
patterns, called ideal composite patterns, at T=0. The composite patterns are generalized and
followed at T>0 using numerical solutions of the mean field equations to obtain phase diagrams
for their stability. Section V presents brief conclusions and relates this work to other complex
systems and their substructure.

Il. Related Research on Subdivided Neural Networks
Theoretical analysis of subdivided attractor networks has focused on hierarchical networks
where the interaction between subnetworks is only through the subnetwork magnetization.1-3

Higher levels of the hierarchy are networks of synapses between neuron-like subnetwork
magnetizations. In effect, the inversion degeneracy of subnetwork states is used for the higher
level degrees of freedom. If the magnetization is explicitly normalized to create new Ising spin
variables the states of different subnetworks and different levels of the hierarchy are decoupled.3
When unnormalized, the interactions between subnetwork states are through the magnitude of
the magnetization.2

In a more biologically relevant model, the possibility of training correlations between
subnetwork states was considered by Sutton et al4 in the context of a network hierarchy with
asymmetric synapses between selected neurons in different subnetworks. Our analysisis closein
spirit to that of Sutton et al, however our interest is not only in describing the trained correlation
between subnetwork states but also the stability of states that are formed out of other
combinations of trained subnetwork states. Idiart and Theumann® considered binary branching
hierarchical networks where all individual spins in subnetworks interact via Hebbian synapses.
They considered the retrieval of network states that differ from the imprinted states only by
inversion of subnetwork states. Our study of composite states in subdivided networks generalizes
their discussions.



lll. Advantages of subdivision

The primary measure of neural network capability is its capacity to store imprinted patterns.
The storage capacity of a neural network increases with the degree of interconnectedness. For a
network where each neuron is connected to every other neuron the number of imprints that can
be recalled aN is proportional to the number of neurons N with a constant of proportionality o
somewhat dependent on the particular imprinting rule. When additional imprints are added an
overload catastrophe causes erasure of all information. Subdivision inherently results in a
decreased storage capacity. Biological evidence indicates that the brain has well defined
functional subdivisions. We are investigating the functional advantages such an architecture
might provide.

A. The left-right universe

Consider first an artificia world composed of pictures with independent (uncorrelated) |eft
and right halves. A completely connected network is capable of recalling aN pictures. However,
if we divide the network into left and right hemispheres, the subdivided network can recall
(aN/2)2 pictures. Since the number of neurons is large this results in a huge increase in effective
storage capacity. Moreover, training the network may be achieved with only (aN/2) imprints.
Since each hemisphere acts independently all possible combinations of left and right halves are
recalled. Of courseg, if the network were divided top-from-bottom rather than left-from-right the
scheme would not work. The memory would be degraded to (aN/2) patterns and many spurious
patterns would be introduced. The effectiveness of subdivision requires matching to the nature of
information. The key property that motivates subdivision is the independence - the lack of
correlation - between parts of the information. The existence of synaptic connections reflects a
correlation or coupling between distinct pieces of information. The use of subdivision enables a-
priori separation between independent aspects .

B. Artificial neural network applications

Subdivided neural networks have been used in artificial neural network applications for
performing parallel or sequential subtasks. A recent illustrative example for parallel tasks makes
use of a partitioned feed forward network for the recognition of Kanji.6 For this application the
Kanji were separated into components (radicals) by a preprocessing step and independent
recognition tasks were trained and performed on the separated radicals through distinct feed
forward networks. The motivation for subdividing the network as a means of subtask
performance is intuitively clear since, as afirst approximation, the large number of Kanji may be
considered to be formed by combining together comparatively few radicals. It is the
independence of the distinct recognition tasks that makes this effective.



In the event that the tasks are not completely independent the introduction of weak
interactions between the subnetworks should introduce correlations between the subnetwork
functions.

C. Color shape and motion in vision

The human visual system does not take advantage of the two hemispheres of the brain to
divide the visual information right from left because the left and right visual fields are not
independent. Instead, visual processing separates three attributes of the information: color, shape
and motion.” The implication of this preprocessing step is that these information categories are
partially independent so that, for example, visua fields with the different shapes can have the
same colors. Or, vice versa the same shapes can have different colors. This independence is
genetically coded into the structure of the initial information processing.

The existence of three attribute categories enables a large number of descriptive categories to
be constructed out of a selection of one from each attribute. For example, by separating the color
information to one subnetwork, shape information to the second, and movement information to
the third, it is possible for the network to identify categories such as: RED ROUND MOVING-LEFT,
and RED ROUND MOVING-UP, BLUE SQUARE MOVING-LEFT, and BLUE ROUND MOVING-UP. The
network receiving color information identifies the color, and so on. In afully connected network
these categories would each require separate identification (and category correlations would
severely impair operation). If the subdivided network were completely separated the total
number of categories would be a product of the number of categories stored in each subnetwork.

Partial subdivision implies correlation between the different attributes is al'so significant. In
the natural world shape, color and motion are not completely independent attributes. Local
correlation in the visual field such as the coincidence of edges in color and shape maps is only
part of the correlation between these attributes. At higher levels of abstraction / processing there
are important correlations between the overall shape of an object its color and both its direction
and likelihood of motion.

D. Parts of speech - nouns, verbs and adjectives

If subdivision provides advantages in neural networks it should be particularly relevant to
man-made constructs such as language. The subdivided network provides a systematic method
for information organization in terms of elements (the stable states of subnetworks) which are
organized in element-categories (the stable states of a particular subnetwork) and the
compatibility relationships between elements as dictated by the inter-subnetwork synapses. This
is reminiscent of the structure of grammar where nouns, verbs and adjectives and other parts of
speech are categories that have elements and there are compatibility relations among them. It is



tempting to speculate that different subdivisions of the brain are responsible at least for the major
parts of speech and the ability to combine them in different ways results from weakening the
strength of inter-subnetwork synapses compared to the intra-subnetwork synapses that store
representations of each word. Unlike a dictionary where the grammatical usage of a word is
identified by alabel (noun, verb, adjective, etc.) the storage of aword in a particular subdivision
identifies its grammatical usage.

In Fig. 1 an example illustrating a fully connected and fully subdivided network is shown.
The complete network is large enough to be subdivided into three networks each of which can
store three words (coded appropriately). A fully-connected network would then be able to store
nine sentences with three words each since the storage capacity grows linearly with size. On the
subdivided network we could imprint three sentences and twenty-seven sentences would be
recognized. The central difference between the set of sentences that can be remembered by the
full network and the subdivided network is summarized by the concept of 'semantic content' vs.
‘grammar.’ The complete network knows more full sentences but does not have knowledge of the
divisibility of the sentences into parts that can be put together in different ways. The subdivided
network knows the parts but has no relationship between them, thus it knows grammar but does
not know any context information, like who it is that fell.

The actual process in the human brain is a combination of the two, where sentences make
sense or are 'grammatically correct' if properly put together out of largely interchangeable parts,
but an actual event or recalled incident is a specific combination. This can be captured in the
network by having a partial interconnection between subnetworks. It is to be expected that partial
subdivision leads to an intermediate situation where sentences are constructed out of largely
interchangeable parts, but an actual event or recalled incident is a specific combination. Thisis
confirmed by the analysis described below.

IV. Derivation of stability conditions for subdivided networks

We derive and solve the mean field equations for the retrieval of composite states in a
partially subdivided network. Section A reformulates the problem in a separable form suitable for
application of the standard mean field solution for fully connected networks. Section B obtains
the mean field equations using a generalized form of self averaging. Section C obtains the
analytic solution of the mean field equations for the composite patterns at T=0, where the details
of the derivation are given in the Appendix. In Section D we discuss the conventional spurious
patterns that are distinct from the composite patterns but also appear in suitably generalized form
as solutions of the mean field equations. In Section E the stability of the composite patterns at
T=0 is proven using the second derivatives of the free energy. The composite solutions are




generalized to T>0 in Section F using numerical solutions that obtain phase diagrams for
networks with 2,3, or 4 subdivisions.

A. Formulating the subdivided network in a separable form.

We assume a network comprised of g subnetworks (each containing N¢= N / q neurons) that
are fully internally connected but more weakly connected to each other, the ratio of connection
strengths is controlled by a parameter g1 [0,1]. g=0 corresponds to a completely subdivided
network and g=1 corresponds to a conventional Hopfield network. For arbitrary g the synaptic
connection matrix iswritten as:
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The first case correspondsto i and j in the same block along the matrix diagonal, i.e. in the same
subnetwork. J¢ isthe usual Hebbian matrix:
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The neural firing patterns {x." = +1} are chosen at random, where i T {1¥4,N},m1 {1%,p} .
We can reformulate this in amore convenient way. First we write:
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where we have introduced a set of new "pattern”s x"Uthat are correlated with the original set.
x"Y isidentical to the pattern x ™ in the gth subdivision and zero elsewhere:

Xi'0 = dif ggXi (6)

where
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g takes vaues from 1 to g throughout the following treatment.

We augment the set of correlated patterns by including the original patterns as
00 ™ )

|
whenever the case a = 0 is included we use the index a for x™ to distinguish it from x™
Egs. (6)-(8) can be generalized to include this case by introducing § © {1,...,N}.
Using these definitions the synaptic matrix can be written in a separable form similar in
appearance to the Hebbian form:
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where h™ is proportional to x™:
h™ o Jox™ © Jox" (11)

h™ o [T gxM™.

B. Mean field equations: Order parameters and free energy
The energy in the magnetic analog for the neural network has the standard form:
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because of the separable form of Jj; in Eq. (10), the conventional mean field analysis® may be

used without modification. This directly leads to the ensemble averaged mean field equations for
the order parameters:
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where the order parameters are ensemble average overlaps of the neural state s; with the patterns

h™ defined in the usual way,
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Now we formulate a generalization of self-averaging for the case of our correlated patterns. It
applies to any function of these correlated patterns and reads:
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where the double brackets indicate averaging over the quenched random variables x. Using this
self averaging and rescaling MM

M™ = % m™ (16)
M"Y = B mY
q
in Eq. (13) leads to the mean field equations for m™®
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Given asolution m™ of the equations, symmetries guarantee the following transformations
yield new solutions:

m® ® - mm (20)
for any fixed m but for all a simultaneously;
m? « mm (21)

for fixed mandn but for al a simultaneously; and

M« T (22)
for al m simultaneously and any fixed g,gd. Thefirst two are conventional symmetries and the
third is arenaming of subdivisions resulting in the switching of subdivision order parameters.

The free energy may also be obtained in terms of the order parameters. Substituting Eq. (10)
into Eq. (12) and setting h® =0 the energy takes the form:

E=-— a8 a h®hi®ss; (23)

2NIJ itjma



then using conventional manipulations® that define the free energy, introduce the auxiliary fields
M™ (or the rescaled m™ ), perform saddle point integrations and self-averaging, this leads to
the free energy

F= _gzé( W)h%?géjé(mw)z
- —; <<Ing2cosh a [ g(m™ + ™) +(1- g)m™ +h”a))xm]§>> (24)
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the last two terms above are negligible when pg/N is small. For g=1, g=1, F is the conventional
free energy. One must remember that this equation makes sense only when used at the minimum
of F with respect to variationsin m™
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Egs. (17) and (18) result from Eq. (25) when we set h™ (conjugate variables to m™ ) to zero.

C. Composite pattern mean field solutions at T=0

We intend to investigate the retrieval of composite patterns. At T=0 the composite patterns
assume an idealized form that will be generalized in Section F for T>0. In each subdivision the
ideal composite pattern is the same as one of the imprinted patterns. However in different
subdivisions the pattern may belong to a different imprinted pattern. We can identify a particular
composite pattern by a set of indices {ny}, my represents the pattern contained in subdivision g
A negative valure of m represents the presence of the inverted pattern -x™ The set of
subdivisions where x™ occurs are called Ay, and that of -x™, By, that is:

° {dmy =}
° {gImy =-m

By symmetry (Eg. (22)), all rearangements of these indices lead to the same retreival
problem. It is more convenient to characterize the composite patterns by a,,, the number of
subdivisions that contain a particular imprinted pattern, and by, the number of subdivisions that
contain its inverse. These numbers can be zero for some m There are some immediate identities:

#An = am# By = by, (27)

(26)
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where # is the set number operator. These identities are useful for evaluating the expressions that
follow. We note that if only one a, is non-zero and al by, are zero then the composite pattern
corresponds to a particular imprinted pattern.

Using the form of ideal composite patterns described above in the definition of the order
parameters Eq. (14) we derive the following form for the order pararmaters

™ = m(am- by (30)
im if g1 Aq
mY=i-m if gl By, (31)

¥0 otherwise

which we will call the ideal composite form. The composite form described above would imply
m=1. We have included the variable m to provide an extra degree of freedom in the equations.
Our analysis of the mean field equations at T=0 will verify that the form Egs. (30) and (31) is
only possible for m=1.

Weinsert the ideal composite form of m™ (Egs. (30) and (31)) into the mean field equations
(Egs. (17) and (18)) changing the tanh function to sign function for the T=0 limit. We consider
only the case where h® = 0. From Eq. (17), for m™ we obtain:

m //xms nA— m!' m 9)x! d\\
(8- bn) = a 1\\ g | & @m %+ (1- gJm'9) L// (32)

Eq. (18) for m'™® separates into two cases depending on whether the order parameter m™ iszero
or non zero. If the order parameter is non-zero then we have g1 Ay, or g1 B,. Eq. (18) then
becomes (+ signsfor g1 A, —signsforgT By):

/] e

tm= \\X Slgn| %‘S{(g(a - b )X )£ (- Q)Xmuy>> (33)

If the order parameter is zero, then we have g 1 A E By, we can write g1 A, or g1 B, for
some nt m. Eq. (18) become£(+ signsfor g1 A, —signsfor g1 By):
Al s\ "

\\X sgnl—éa(g(a{ b )x' )+ (1- gx" L‘y//

We can summarize Egs. (33) and (34) as.
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In order for the trial solution to be valid this equation must be satisfied, for each mand all n for
which A, * A& (a, * 0) for the + sign, and B, * A (b, * 0) for the - sign. As before, Eq. (32)
is the sum over Eq. (35) and therefore need not to be considered separately in obtaining the
solutions.

Our objective is to solve Eq. (35) for al values of g. We note that Eq. (35) becomes easy to
solve for the cases g=0 and g=1. For g=0 (a totally subdivided network) this equation is always
valid, with m = £1. Thus, for the totally subdivided network all possible composite patterns are
solutions. For g=1 (a totally connected network) the equations for n* m and n=m have the
same left hand sides and therefore can be made consistent only when we have just one non zero
am or by, which then has to be g (in this case n* m should not be considered at all). Thus, for
the totally connected network only the complete imprinted patterns are solutions.

For convenience, we assume in what follows that g1 (0,1) and divide the argument of the

sign function by g:
nth\

[

\\x sgnea (& - by )X )+( - X" L// = #md™ (36)

First we consider the case when al of the b s are zero

<<x sgnea a ' +(— - 1% 3>X =|mid™ (37)

the goal is to find the range of g for which thisis valid for a specia choice of { a,,} . When only
one a,, is non zero (an imprinted pattern) all g values satisfy Eq. (37). For two or more non zero
am, theresult, after some analysis, is
1
< =— & |m]F1 38
0 < Omax 1+q- 2am Im (38)
Details of the derivation of Eq. (38) are described in the Section A of the Appendix. An alternate
derivation using signal-to noise analysiswill be published separately.
For the case when not all by, are zero, in Section B of the Appendix we show that the
condition on g becomes
1
< = 5 & m|=1 39
9 < Omax 1+3 0 - b | Im| (39)
I
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This condition applies unless for each mayp,= 0. When all a.pp,,=0 every imprinted pattern
appears in the composite pattern with only one sign, and by reversing the sign of the patterns that
have bp{ 0 we return to the previous case where all bp=0. Thisis verified by the direct analysisin
Section B of the Appendix. Note that Eq. (39) does not reduce to the Eg. (38) simply by taking
bn=0.

We have shown that at T=0 the ideal composite patterns are solutions of the mean field
equations in the restricted range g < gy 9iven by Egs. (38) and (39). This does not guarantee
that they are minima of the free energy (i.e. stable). In Section E below we will show by direct
computation of the second order derivatives of F (the stability matrix) that they are stable near
T=0 throughout the range of g < gya - Furthermore, in Section F we solve numerically for the
phase diagrams of minima of F - the range of both g and temperature for which composite
patterns are stable.

It isinteresting to consider how the two ranges of g valuesin Egs. (38) and (39) compare. To
make this comparison, with no loss of generality, we assume that a,# by, for all m Then Eq. (39)

becomes::
1

<—
1+g-2ah
I
When all regions of the network that represent a single imprinted state have the same sign, the
value of g is limited by the minimum size of the network representing a particular pattern (Eg.
(38)). However, when patterns are present with inverted portions, the value of g is limited by the
sum over al inverted parts (EqQ. (40)). This occurs because the instability of the smallest portion
of the composite pattern arises from the random fields generated by all other imprinted patterns.
A destabilizing field arising from a portion of the network representing another pattern is
coherent because their field tries to reconstruct the remainder of that pattern. However, the
coherent destabilizing field is canceled to the extent that its inverse appears in the composite
state. One way to look at Eq. (39) is that the smallest portion of the composite pattern (minimum
b)) is strengthened by the other b . Thisresult persiststo the finite temperature case in Section F.

9 & |m|=1 (40)

D. Spurious solutions.

In addition to the composite solutions there are additional solutions of the mean field
equations that correspond directly to the spurious states of fully connected networks. We can
include some of these solutions by generalizing the forms Egs. (30) and (31) to include a single
variable instead of all previousy vanishing parts:

12
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inserting these inEq (18) resultsin
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The case e=0 corresponds to the composite solutions that we have aready examined. The

symmetric spurious solutions correspond to the case e=1 and B, = A&. for all m. In this case the
two equations are identical and simplify to

// ¢4
"

i by -

i
tanh bm(qg +1- g) g)

<<xmtanh| bmg(a X )u

:

g= é(1+ 9(a- 1)) (45)

is the average synaptic strength. This case corresponds to having all patterns with the same order
parameter in each subdivision. This corresponds to the symmetric spurious patterns that have
been studied for a fully connected network.8 For the partially subdivided network the solutions
are the same as for the fully connected network but with a rescaled temperature b — bg Because
the order parameters are the same in each subdivision only the average synaptic strength plays a

13



role. This is the same rescaling as would occur for stability of one of the imprinted patterns, as
discussed in Section F (see Eg. (55)).

In addition to the symmetric spurious patterns there are non-symmetric spurious solutions
that can be identified by taking the limit of Egs. (17) and (18) at T=0 and g=0. Eq. (17) was
derived by canceling afactor of g on both sides of Eq. (13), in thislimit it will be identically zero
and aways valid. Eq. (18) reducesto

m™ ://x"bigngé m”gx”z\\ (46)
\\ €n u//x

Since g=0 the subdivisions are independent and different gs are decoupled. This is the genera
equation for mean field solutions for a single network at T=0. The number of subdivisions q
plays no role in determining the form of solutions. The symmetry m™ ® - m™ for any fixed m
but for al a simultaneously, reduces to m'° ® -m™ for any m or g independently. In
addition, if for some m, m™ is zero, then for this m Eq. (46) is automatically satisfied and it
does not enter the equations for other m. To find all possible solutions we find the possible sets
of positive {m”g,m: L1/4,p} for fixed g that are solutions to Eq. (46). By inversion symmetry
we need only consider either the plus or minus sign. Any combination of these for each g with
either sign and extra zero elementsis also a solution.

The ssimplest nontrivial solution occurs for p=1 and is m=+1. Adding zeroes and combining
them for different g's will generate all of the composite patterns discussed in the previous
section.

Other solutions arise when one considers special combinations of m™ in which the sign
function in Eq. (46) vanishes for some of {x”} Using the relevant convention sign(0)=0 the
averaging results in |m”g| <1. For p=2 the only extra solution of the mean field equations are
m"™ equal to {+1/2,+1/2}, for p=3 the additional solution is{+1/2,+1/2+1/2}, and for p=4 there
are three other solutions: { £5/8,£3/8,+3/8+1/8}, {£1/2,+1/2,+1/4,+1/4} , { +3/8,+3/8,£3/8,£3/8} .

These solutions correspond to some of the known spurious solutions for a single network.
While they are solutions of EQ. (46), not all are stable. All the patterns for even p are unstable.
Our simulations confirm that they are unstable for every g>0 even at T=0 and evolve to other
solutions. The p=3 solutions are stable. When the p=3 spurious solutions are present in all
subdivisions (all g) these are the same symmetric spurious patterns discussed earlier. Combining
spurious solutions with composite solutions in different subdivisions also leads to stable states.

E. Stability matrix
To investigate the stability of the composite patterns we study the eigenvalues of the second
derivative of free energy (Eq. (24)) written in terms of m™ . The first derivatives of F are:

14
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Defining the second derivative matrix
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we derive the different elements as
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(49)

(50)

(51)

In the limit T® 0 we see that Qg ® d™ when the argument of tanh doesn't vanish for any
{ ”} .This condition is guaranteed for composite solutions when g < Omax (With no equal sign)
as shown in Section C of the Appendix. Inserting this limit of Qg into Eq. (50) implies that for
T® 0 and g < gng the second derivative matrix is diagonal with positive eigenvalues. Thus

the composite solutions are stable near T=0.

For the more general case of arbitrary temperature one must find the eigenvalues of A. We

construct B° A-1 |

a
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B = g ™11 ) - 2 ™ Q)

The determinant of B must be equated to zero to solve for | . B has asimpler form (B® B;)

after performing some elementary row and column operations (that do not change the
determinant):

momo _ o, (&, 99 0
B =d™ (1 |)é1+1_gg (53)

Blrrﬂ,mg _ Blrrg,mo _ drm1(1_ 1) 1_99

. ¥:) b(1- u
Blﬁg,mg =% Ad”m(l- 1) - M(dmﬂ - ng) .
e B
In order to make use of this expression it is necessary to know m™ for T 0. In the followi ng
section we describe numerical solution of the mean field equations that explicitly determine the
phase boundaries of the stability of various composite states.

F. Phase diagrams of composite states

For T >0 the ideal composite form of the order parameters, Egs. (30) and (31), must be
modified because it includes only one unknown m and there are two or more equations to be
satisfied (Egs. (17) and (18) for different M and 9). These equations are degenerate only at T=0.
For T >0 we generalize the composite forms by assuming the most general form of m™ . For
each ideal composite pattern the value of the order parameters m™ (T,g) arethen obtained by
continuation from the ideal composite solutions at T=0, g=0. There is arange of g and T over
which the continuation is stable. The boundary of this region is analogous to a phase transition.
The ideal composite patterns at T=0 correspond to the retreival of one and only one imprinted
pattern x™ in each subdivision. The order parameter of a particular pattern x™ will decrease
(from the value 1 at T=0) at a rate that depends on the number of subdivisions that contain it as
specified by (ay,by,). Moreover, the existence of a non-zero order parameter for a pattern in one
subdivision will cause anon-zero order parameter for the same pattern in all other subdivisions.

To study the phase transitions of the composite patterns we started with the ideal form of
each composite pattern for g=0 at T=0. Gradually increasing g and T we performed iterative
minimization of the free energy. Conjugate gradient minimization was used to find the closest
local minimum of the free energy with respect to the order parameters m™® . We then located the
temperature for each g at which the composite pattern would no longer be stable (at this point it
will typically evolve discontinuously to other solutions that are stable, if there are any). We
varied each of the m™ as an independent variable. Care must be taken to break symmetry at
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every step using small random perturbations to m"® to avoid the conjugate gradient (or steepest
descent) remaining upon a saddle surface. The phase diagrams and order parameters that resulted
areillustrated in Figs. 2-7.

Numerical solutions of the mean field equation were performed for the cases g=2,3 and 4. In
each case we took the number of non zero values of a, to range from O to g, the maximum
allowed in a composite pattern. We specify the form of each composite pattern by the value of
(am- by of each of the patterns (dropping b,~0 for conciseness). For example, in the g=4 case
[4000] represents &g =4 and a,=ag=a,=0. This is one imprinted pattern retrieved in the whole
network. [1111] is the composite pattern with four different patterns retrieved in the four
different subdivisons a;=a,=agz=a,=1, [2(1-1)00] is the pattern with & =2,a,=b,=1 and
ag=ay =0. Note that Eq. (28) is satisfied.

For each g we plot phase diagrams showing the transition temperature as a function of g.
Each pattern is stable below its phase transition line. These diagrams enable us to determine
domains in the phase diagram where particular kinds of patterns are stable while others are not.
We also show plots of the order parameters for some of the composite patterns as a function of
temperature at the value g=0.1. We discuss below some conclusions that can be reached from
these diagrams.

The phase transition diagrams show that in all three cases the imprinted patterns are the most
stable. Also their transition line is straight. This can be derived directly using the form of the
order parameters for retrieval of animprinted pattern {x"} :

m™ = md™ -

m™ = gmd™ 4
in Egs. (17) and (18). This results in the usual 1sing model equation for the order parameter m
with rescaled temperature

m = tanh(b¢n) (55)
be= 2@A+1- Q)
q

Thus the pattern is stable for b¢ greater than 1. Setting b¢=1 gives the phase transition line for
the imprinted pattern. As derived numerically T&g) is linear and passes through the points
(g=0,T=1/qg)and (g=1T =1).

For the composite patterns there is a hierarchy of descending ranges of stability. Asarule the
composite states that have a set of {a,3 with higher symmetry are stable at higher temperatures.
Specifically patterns with equal am, or by have higher stability. For example compare [111] with
[210] and others in the g=3 case. For g=4 compare [2200] with [2110] or others whose transition

17



lines are below that of [1111]. Also for g=4 compare [1111] with [(1-1)110] or with [2110] or
with [3100] that are less symmetric.

Comparing [2200] and [1111] shows that among the symmetric patterns those with greater
am are more stable. Thisis reasonable since the reoccurrence of one pattern in more subdivisions
strengthens its retrieval. However for nonsymmetric patterns, such as[2110] as compared to the
symmetric pattern [1111], increasing ay, for one of the patterns has the effect of lowering the
stability of the other patterns and thus lowering the stability of the whole composite pattern. This
trend is maintained when going to the pattern [3100] which is even less stable than [2110].

For all cases g=2,3,4 there are distinct composite patterns that appear to have identical
transitions. This usually happens when the value of an an, is split between a,, and by, For g=3
the case of [210] and [(1-1)10], and for g=4 the cases of [2200] and [(1-1)(1-1)00], [3100] and
[(2-1)100]. Alternatively this can happen when two ay, are combined into (ay-bpy for one
pattern. For g=2 the case of [11] and [(1-1)0], for g=3 the case of [210] and [(2-1)00] and for g=4
the cases of [2200] and [(2-2)000], [2(1-1)00] and [(2-1)100], [3100] and [(3-1)000]. If these
splittings or recombinations change the symmetry of the pattern (as discussed in the previous
paragraph) they do not overlap which indicates the priority of the symmetry (compare [111] with
[(1-1)10], and [2200] with [2(1-1)00Q]). There are cases where the transition lines are not the
same even without a change in symmetry that are as yet unexplained. For example, compare
[2110] with [2(1-1)00], and [2110] with [(1-1)110]. In these cases the patterns may differ in
symmetries more complicated than the one mentioned above. We have been able to show
analyticaly the equivalence of the phase transition line for [11] and [(1-1)0]. A genera
derivation for all cases has not yet been found.

All transition lines have the same value at g=0. For the fully disconnected network the
pattern in each of subdivisions is retrieved independent of the other subdivisions. Composite
patterns or imprinted patterns have the same transition temperature b¢=1. This can be seen aso
by setting g=0 in Egs. (17) and (18) which decouples different g.

The value of g at which the transition lines reach T=0 agreesin all cases with the analytically
derived value of g Qivenin Egs. (38) and (39). When a composite pattern has higher gy it
has a higher transition temperature for all g (or ahigher transition g for all T). However, in many
cases composite patterns with the same g5 have different transition temperatures in the range
0<9<09mux-

Plots of the order parameters, Figs. 3, 5 and 7, show that the phase transition for the
imprinted patterns are second order but for composite patterns they are all of first order. The
plots shown are all for the same value of g=0.1. The height of the discontinuity in the order
parameters increases as a function of g. Starting from avalue of zero at g=0 it always reaches the
vaue Dm=1 at gy -
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V. Conclusions

We have analyzed the retrieval of composite patterns in a partialy subdivided network. The
existence of composite solutions of the mean field equations shows that imprinting patterns on a
partially subdivided network results in retrieval of an expanded set of composite patterns. The
kind of composite patterns that are retrieved depends on the strength of the synapses between the
subdivisions.

The degree of functional localization in the brain has long been a controversial subject. We
have attempted to provide a framework in the context of the theory of attractor networks in
which questions about functional separation and its utility may be formulated in a more precise
language. The expansion of memories from the training set to the set of combinations of trained
subnetwork states is a strategy for generalization by the network that may be used to incorporate
prior knowledge about correlations. Conventional attractor networks generalize because training
corresponds to creating a local minimum in the vector space of network states -- the basin-of-
attraction of this state becomes its generalization. Partialy subdivided networks generalize by
recognizing various combinations of substates. Since the network has been trained on far fewer
states than it recognizes it may be said to have generalized from the training set to the set of
recognized states. This is an advantage if the architecture of subdivision is in direct
correspondence to the information to be represented. Thisis afirst step to understanding various
aspects of generalization and creativity in the form of combining aspects of learned information
in new ways.

The use of a combinatorial expansion of substates of a particular complex system is not
restricted to neural networks. Another example exists in the function of the immune system®
where the genetic code for the immune cell receptors that detect antigen are formed from a set of
seven pieces taken from the cell genetic code. The set of imprinted states x is analogous to the
possible sequences of each of the DNA segments, and the state of the receptor becomes a
composite state. This combination of different pieces into composites enables the cells to
construct alarge variety of receptors from asmall set of initial components. Interactions between
the different DNA components arise because of the process of expression of the gene. The final
structure of a receptor relies upon al of the genetic components which therefore interact - they
are not fully independent. This has a similar flavor to the consideration of partially subdivided
networks.
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Appendix: Range of Stability of Composite Patterns at T=0

In this Appendix we describe the solution of the zero temperature mean field equations for the
composite patterns (Eg. (36)). In Section A we prove Eq. (38) which applies to the composite
patterns for which every stored pattern appears with only one sign. With no loss of generality this
can be restated as by, = 0 for al n. In Section B we prove Eq. (39) which applies to the more
general case where some patterns appear with both signs in the composite pattern. These sections
only describe the validity of composite patterns as solutions of the mean field equations, Egs. (17)
and (18). In Section IV.E of the text we prove that the composite patterns are memories - stable
states near T=0 of the neura dynamics - by showing that the eigenvalues of the second derivative
matrix of the free energy are all positive. In Section C of this Appendix we prove an inequality that
isneeded in the analysis of Section IV.E.

We note that any imprinted patterns that do not appear in the composite state do not affect the
mean field solutions at low storage. These patterns satisfy a,, = b, = 0. In solving Eq. (36) we
first perform the summation and averaging on all x" for which a, = b, =0, since these have no
effect. In what follows we consider only the set of n for which a, or b, is non zero
(an +by * 0).

A. Composite patterns with all b, =0

Therelevant equation to be solved, after setting all b, equal to zero in Eq. (36), is Eq. (37).
The objective is to find the range of g for which this equation is valid for a particular choice of
{ am}- Theresult is Eq. (38), where api,, represents the smallest non zero a,,. This form is valid
when two or more a,, arenon zero. The case of exactly one non zero a,, is discussed in the text
following Eqg. (37): when only one a, isnon zero al g T [0,1] satisfy Eq. (37). In the rest of this
section we assume that two or more a,, are non zero.

We first rewrite Eq. (37) for the two casesn# n, men and take x™ inside the sign function

s .
<signéam+ 3 ax +(- 1)x”§ =0 (AD)
& Itm 9 }
X
. € o | 1 y
<<S|gnéam+ aax +(—-1)§> =|m| (A2)
é | tm g y

Since
8ax' +(£- 1)x"
[1m g

changes sign whenever {x} ® { x} , and a,, ispositive, Eq. (A1) isvalidif and only if:



a a X +(é- )x"

[1m

am- <0 (A3)

for all {x} andforal m.Inasimilar way if we want a nontrivial solution with m 0 Eq. (A2) is
valid if and only if for some {x}

éax'
[*m

am+(é- 1)- >0 (A4)

The number of {x} satisfying Eq. (A4) determines the magnitude of m. This number must be the
samefor al m. This originatesin the ideal composite form where we assumed that the magnitude
of m"¥isindependent of m.

The inequalities (A3), (A4) may be solved to obtain the range of g in which they are valid.
Inequality (A3) impliesthat for every m and{x} , and for every n* m either

7

é u
am+(=- X"+ & X' <0oran-d=- <"+ & ax G<0 (A5)
g | 1m e [1m l:l

must be satisfied. It is sufficient to consider x" =1 because these two inequalities transform into
each other under the transformation {x} ® { x} . Then we derive the equivalent constraints as
either

1 o | él o |l:J
am<(=-D+aax oan<-d--+aaxy (A6)
9 l1m &9 Itm

Sincewe have set x" =1 at least one x' must be equal to onein the sum 501 a,x' . Theinequalities
in (A6) lead to the following compound logical statement. e
For every m and every{x} with at least one x' (I £ m) equal to one

either éqx' 3 am (P1a)
[1m
or g-< 10 | (P1b)
1+34- A X
[tm
or é_a,x' <-apandg> = ] (P2)
l1m 1- gn- A gx
[Tm

and also for every p there exist some{x} such that

aax

I1m

either £ ay (P3a)




1

or g< (P3b)

aax
[im
The number of patterns that satisfy (P3a) or (P3b) determines the magnitude of m. More
precisaly for each , if the number of {x} satisfying (P3) is K then m derived from (A2) is equal
to K/2P where p is the number of non zero au. This statement is composed out of severa
conditions. (P1a) and (P1b) arise from the first part of Eq. (A6) and (P2) arises from the second
part of Eq. (A6). (P3) results from asimilar analysis of (A4). In what follows we show that (P2)
isnever satisfied for m* 0. We assume this result for the moment. Then (P1a) or (P1b) must be
true for al pand {x} . The range of acceptable g values is determined by the value of p and the
pattern {x} that sets the most restrictive limits using (Pla) or (P1lb). This is obtained by
considering the particular {x} for which only one x" =1 where a, is minimal and al other

x! =-1,1 * n.Then(Pl) results:

1
< Omax ° A7
0 < Omax 1+ &a - amn (A7)
& * amin
which is the first part of Eqg. (38). Moreover, for this range of g (P3b) will be automatically
satisfied for all {x} thus m=1. Thisisthe second part of Eq. (38).

It remains to be demonstrated that condition (P2) can never be satisfied. We note that (P2) and
(P3) are mutually exclusive. When m is non zero (P3) must be true for some {x} thus (P2)

cannot betruefor al {x} . There remains the possibility that for some i there exists a {x} (the set
of theseis denoted as {{x}} PZ), for which (P2) isvalid, and for the rest (P1) is satisfied (denoted
by {{x}}""). Some of the {x} in {{x}} " must satisty (P3). The sats {{x}} " and {{x}} "~ may
be mdependent.

1- g+

Webegin by considering only the mfor which a,,, has its largest value. If there is more than
one mwith the maximal value of a,,, anyone of them may be used. We begin by assuming a non-
empty set {{x}} P2 and demonstrate a contradiction.

Since condition (P2) gives alower limit on g and condition (P1) gives an upper limit on g the
of a non-empty set {{x}} P2 implies arange for g of the form grf%( <g< g,?]iln . In thisrange m

would be less than one. Here grf%( is the maximum of
1

1-an- aax

I 1m

(A8)

P2 _ . : : : :
over the set {{x}} *. This expression reaches its maximum value when the sum & ax' in the
. . . P2 . . im .
denominator is maximal over {{x}} . We call this maximum value SrFT%( and a patteff for which



the maximum value is attained { }P . Similarly we define SmIn as the minimum of a a x
over {{x}} P and a pattern for which the minimum value is attained { };?n o
There are two possibilities depending on whether { }mm satisfies (Pla) or (Plb) If { }mm

satisfies (P1a) then all members of {{x}} i must satisfy (P1a). In this case gmin—l, applying

(Pl1a) to {x} ﬁn and applying the first part of (P2) to {x}z;( we have that Srﬁn - Sﬁqu > 28,
The other possibility isthat {x} '+ satisfies (P1b), then gii, is the minimum of
1
. | (A9
l+a,- agXx
[1m
P1 : P1 : P2
over {{x}} Applylng (P1b) to {x }IBF and applying the second part of (P2) to {x} - , and
using gr'?“ln > gmax we dtill havethat Spyi, - Sﬁgx > 2ayy, which therefore appliesin all cases.
When we apply Smm - SE%X > 2a, to themfor which a,isthe largest we find
Srlil}n - Sﬁgx > 28max (A10)

Thisisimpossible as we now demonstrate. The pattern {x} Eéx has at least one x' =-1 because it
satisfies the first inequality in (P2). By changing the sign of this particular x' we arrive at a new
pattern which must be in {{x}} "L Thevalue of & ax' for this pattern is equal to SP2, +2a |
0 Sy Which is the minimum of all sums ‘over {{x}} P! must be less than or equa to
SP2 +2a which contradicts (A10). This proves the assertion that {x}} P2 isanull set for this
gpecia p . Thisshowsthat for the particular mfor which a,, is maximal (P2) can never be valid .

For the case where a,,, is maximal we have shown that the condition (P1) applies to any pattern
{x' } . We consider the application of (P1) to aspecially constructed pattern. In this pattern {x' } is
+1 only for one particular n and -1 for all the others. The value n is chosen to be one of the n for
which a,, achievesits minimum (non zero) value. By inspection, the specially constructed pattern
can not satisfy (P1a), it must therefore satisfy (P1b). (There is one special case where it satisfies
(P1a), i.e. when & =ay, =q/2, however (P1b) gives no additional restriction for this case, so
we could say it isvalid). Thisgivesthe most limiting condition on the value of g. Not only is this
the most limiting from all patternsfor thism but alsofor all m(it is equivalent to the condition we
have previously obtained in Eq. (A7)). Thisimplies that for all m(P1) must be satisfied for al
patterns and rules out (P2) for any m completing the proof.



B. Composite patterns with at least one v such that ay = 0bp, = 0.
For the general case of non zero a,,, and by, we start from Eq. (36) We first absorb the sign of
a - b intox' anddefined, °|a - b |

<<[sign(am- bm)]xr%ign[lzm X +signa - bn)(é -1)x”}>>X — omd™ (B1)

or
<<xmsigngelol d x! tsign(a, - b”)(é - 1) u>> = +[sgn(am- bﬁp]lrﬂdm‘ (B2)

In these equations the choice of *+ on the left and right are coupled. As explained in the main text
after Eq. (35) the equations must be satisfied for al n with a+ sign when A, * A (a, * 0) and
with a — sign when B, & (b, * 0). If both a,* 0 and b, * O then the equation must be
satisfied with both signs. Combining this sign with the factor sign(a,, - b,) we define avariable

Sn © +sign(ag - by) (B3)
Sy takesthe value +1 when only one of (an, bp) are not zero or equivaently a,b, = 0. s, takes
both possible values+1 when a b, * O (when they are both non-zero). It has been assumed that at
least oneisnot zero, or a, +h, * 0. Thisleads to the equations

<<s|gnedm+ I? o] X+ Sm(— - 1)u>> (B4)
<\s|gnedm+ I?md| X +sn(— - 1)x §> mt n (BS)

The only difference between Egs. (B4), (B5) and Egs. (A1) and (A2), besidesrenaming a,, as
d,,, is the occurrence of the factor s, on both sides and the possibility of zero d,, for nontrivial
cases i.e. when a, +h, is non zero. These differences will modify the results. Repeating the
analysis of Section A following Egs. (A1) and (A2) we arrive at logical conditions that are
analogous to conditions (P1)-(P3). Before proceeding we note that if there is only one non-zero
a, +h, thecase m* n doesn't apply and only the case m=n must be considered (see discussion
after (B6)).



The set of conditions that must be satisfied by patterns {x} are conditions (Q1)-(Q4):

Eithee & d X 3 dy (Q1a)
[1m
1
or g< S (Q1b)
1+d,- adx'
[im
o .
or adx <-dpandg> 5 . (Q2)
Iim " 1 dy- Q0 x
[1m

This must be applied when there is at least one non zero a, +b, with m* n. There are two
possible scenarios. If forall | * ma b =0 (Q1)-(Q2) must be satisfied only for {x} with at least
onex' equal toone(l * m). Otherwise for each mthe conditions (Q1)-(Q2) must be satisfied for
all patterns. The former case isthe same as Eq. (P1) and (P2) in part 1 with a,, replace by d,, The
|atter is more restrictive and arises from a consideration of the effect of s, .

Also for each m if appy, = 0 then there exist some{x} such that :

either adx|£d, (Q3a)
I1m
1
or g< (Q3b)
1- dp+| & o X!
[1m

If a b, * O then consideration of the factor smresults in replacement of condition (Q3) by

g< L (Q4)

& d x!
[1m
the number of patterns that satisfy (Q3) or (Q4) determines the magnitude of m which must be the
samefor al m

We note the resemblance between (P1)-(P3) and (Q1)-(Q3). They differ in two ways: (1) that
am has been replaced by d,, and (2) the extra condition after (Q2). Thusif for al m a,p,,=0
then (Q1)-(Q3) resultsin the limit analogousto (A7):

1

g

1+d,+

< B6
1+ A d - 2dmin (B9)
|
Thisisidentical to Eq. (38) with a,, generalized to d.,j, which can be either an a,, or a by,

This reflects the inversion symmetry Eq. (20).



For the more general case the existence of at least one pattern for which both a,, and b_are non
zero allows us to apply the conditions (Q1) and (Q2) to all {x} and to obtain the limit of Eq. (39)
ong

g<

1
1+ 44

|
Aninterpretation of this expression and comparison to Eq. (38) isgiven in the text.

To prove (B7) in the case when there is only one non zero a,, + by, we can only apply (Q4)
which by itself will result in (B7). Otherwise if there are more than one non zero a., + b, we first
consider the conditions resulting from the largest d,.

If the largest d,, is zero then all d,,, are zero. Applying (Q1)-(Q3) gives no additional restriction
on g<1 and also ensures that m=1. Thisis consistent with the general result (B7).

When the maximum d,,, is non zero instead of (Q3) we must apply (Q4) and we can rule out
(Q2) for this special mthe same way we treated (P2) in Section A. Thus for the maximum d, (Q1)
must be valid. For the following analysis there are two possibilities. Either thereexistsa n* m for

(B7)

which a,b, * 0 or thereis no such n. In the former case it does not matter weather a b * 0. In
the latter case we know that a b, * O.

If there exists an not equal to mfor which a,b, * O then the second possibility following (Q2)
holds and we must apply (Q1) to all {x} , including thex"=-1 for al n. Thisdirectly gives (B7).

When thereisno such nt mfor which a,b, * O thefirst possibility following (Q2) holds for
pand we only apply (Q1) to those {x} with at least one x' equal to +1 for some | * m. In this
case the lowest limit for g derived from (QL1) is of the form (B6). However we must still consider
the limits established by considering other mfor which dmyis not maximum.

We consider any other non zero d; which we call d. Then either a4 =0 or by, = 0. For
this ' the second possibility following (Q2) applies and (Q1) or (Q2) must be applied to all {x} .
Considering again the pattern x"=-1 for al n, this pattern can not satisfy (Q2) because it gives a
lower bound for g of the form

g

> B8
1+ 4 d - 2dy (B9)

|
which is outside the range already derived (see (B6)). Thus this pattern must satisfy (Q1b) which
issame as (B7).
Finally we note that the condition (B7) on gimpliesthat for all {x} and for all p (Q3) or (Q4)
are satisfied, so m=1. This completes the proof of Eqg. (39).



C. Stability of Composite Patterns at T=0:

As shown in Section E the stability matrix has elements of the form Eq. (50). To find the
eigenvalues of this matrix at T=0 we find the limit of ng, defined in Eg. (51), a zero
temperature.

First we prove that in thislimit and for the ideal composite patterns in the range of g specified
by Egs. (38) and (39) the argument of tanh is non zero for any choice of {x} . For simplicity we
call thisargument bAg({x}) such that Eq. (51) can be rewritten as

ng 0 ((x"km tanh? (bAg({ x} ))>>X (C1)
where
€1, HU
Aglld) - 6a (om O +(1- g I 2 (€2)
gde (]

To prove thisis non zero we first insert the form of the ideal composite patterns from Egs. (30)
and (31) in Eq. (C2). To writetheresult in aform aready used in this Appendix in Egs. (A2) and
(B4), we factor out gxn (n isdefined by the condition g 1 (An E Bn)). With no loss of generality

we absorb thesignof - b into x' and rename x"x' asx' . Thuswe derive

n & .
Ag({x}) = % geh +sn<é : 1>+Ié:1nd| X 2 (C3)
Theterms in the parenthesisin Eq. (C3) are identical to the argument of the sign function in Eq.
(B4). We dready proved that if g isin the limits specified Egs. (B6) and (B7) then m=1. Using
Eq. (B4) this shows that the term in the parenthesis of Eq. (C3) is positive for all {x} . Thus

Ag({x}) isnon zero for all {x} as claimed.

Finally, to obtain the limit of ng as T ® 0, wecan usethe expression

lim tanh?(bx) = 1- 4e 2 (C4)
b® ¥
for any non zero x that isindependent of b to prove that
lim QF™ =d™ +3 (") (C5)
b® ¥

Using thislimit in Eq. (50) Section 1V.E shows that the stability matrix is diagonal with positive
eigenvalues.



Figure Captions:

Fig. 1: lllustration of the use of subdivided networks in the context of language. A fully
connected network with enough neurons to store exactly nine sentences shown on the left may be
imprinted with and recognize these sentences. If the network is divided into three parts it may be
imprinted with only three sentences (center). However, because each subnetwork functions

independently, all possible twenty-seven combinations of words shown to the right are recognized.
Comparing left and right columns suggests the difference between semantics and grammar in
sentence construction.

Fig. 2: The transition temperature as afunction of subdivision connectivity gin a network with
two subdivisions (q=2) for an imprinted pattern, [20], and the two possible composite patterns.
[11] isthe composite pattern with two distinct imprinted patterns in each of the subdivisions. [(1-
1)0] is the composite pattern formed out of one imprinted pattern in one subdivision and its own
inverse in the other. Below each curve the corresponding pattern is stable and above it the pattern is
unstable. The transition temperatures for [11] and [(1-1)0] coincide at all values of g. This can be
proven analytically by analysis of the free energy, EQ. (23). Other cases of overlapping phase
diagrams occur for different composite patterns for larger values of g. The phase diagrams for g=3
and 4 are shown in Figs. 4 and 6 respectively.

Fig. 3: Order parameters m"® as a function of inverse temperature (b) for the imprinted
pattern and two composite patterns. The figures show the behavior of the order parameter on the
0=0.1 cross section of the phase diagram of Fig. 2. (a) The imprinted pattern [20]: The retrieval of
the first imprinted pattern isillustrated so the order parameters for the second stored pattern (mza)
are zero at all temperatures. (b) The composite pattern [11]: The composite pattern is constructed
from the first imprinted pattern in the first subdivision and the second imptinted pattern in the
second subdivision, so mt=m? =1a T->0 (b large), (see Eq.(38)) and m2 =m?l =0inthe
same limit. For T > 0 these patterns dominate in their respective subdivisions but there is some
cross over. (€) the composite pattern [(1-1)0]: The composite pattern is constructed from the first
imprinted pattern dominating in the first subdivision and its inverse in the second subdivision, so
mtt = Ln112 =-1 andm*®=0a T->0 (b large). It is possible to map the order parameters of the
composite pattern [(1-1)0] onto the order parameters of the composite pattern [11] showing the
equivalence of the phase transition temperature in the two cases.

The order parameters undergo phase transitions at value of b corresponding to the value of the
transitiontemperatureat g=0.1 in Fig. 2. For the imprinted pattern (a) the transition is second
order. For the composite patterns the transitions are first order and more detailed analysis shows
that it occurs when the local energy minimum changes to a saddle point. In al casesin the limit T-



>0 (b large) non-zero m™®'s become 1. Note that m™ is the sum of m™ s for each m. The
values of the free energy F at the minimum are also plotted. F changes only very slowly with
temperature. Most of the small change occurs near the transition temperature.

Fig. 4. Similar to Fig. 2 phase transition diagram for.imprinted and composite patterns in a
network with three subdivisions (g=3). Here there are more composite patterns in addition to the
imprinted pattern ([300]). [111] is the composite pattern with three distinct imprinted patterns
retrieved in the three subdivisions. [210] is the composite pattern with the first imprinted pattern
retrived in two of the subdivisions, the second imprinted pattern is retrieved in the other
subdivision, no other imprinted patterns are retreived. [[(1-1)10] is similar to [210] except that in
the second subdivision the first imprinted pattern isinverted. Finally [(2-1)00] is the pattern that is
formed out of a single imprinted pattern but with one of the subdivisions inverted. The transition
temperatures of all the composite patterns except [111] appear to coincide. The T=0 transition point
of al of the composite patterns agrees with the analytical results Eqs.(39) and (40) which give

gmax=0.5.

Fig. 5: Order parameters plotted as a function of inverse temperature b at the value g=0.1 for
(@) the imprinted pattern and (b)-(e) several of the composite patterns of a network with g=3
subdivisions. See Fig. 4 for the phase transition diagram. Compare with Fig. 3. All of the
composite patterns undergo first order transitions while the imprinted pattern has a second order
transition.

Fig. 6: Phase transition diagram for.imprinted and composite patterns in a network with three
subdivisions (g=4) (Compare Figs. 2 and 4). The notation for patterns are similar to Fig. 4. The
composite patternsfall into two groups according to the prediction of Eq.(39) and Eq.(40), those
with gmax =1 and those with gmax=1/3 for their g intersect. The region near g=0, b=0is enlarged
in (b).

Fig. 7: Order parameters plotted as a function of inverse temperature b at the value g=0.1 for
(a) the imprinted pattern and (b)-(e) several of the composite patterns of a network with g=4
subdivisions. See Fig. 5 for the phase transition diagram. Compare with Figs. 3 and 5.



Fully connected network

Subdivided networ k

Imprinting and Retreival Imprinting Retreival
Big Bob ran. Big Bob ran. Big Bob ran.
Kind John ate. Kind John ate. Big Bab ate.
Tall Susan fell. Tall Susan fell. Big Bob fell.
Bad Sam sat. Big John ran.
Sad Pat went. Big John ate.
Small Tom jumped. Big John fell.
Happy Nate gave. Big Susan ran.
Mad Dave took. Big Susan ate.
Shy Cathy Slept Big Susan fell.
Kind Bob ran.
Kind Bob ate.
Kind Bob fell.
Kind John ran.
Kind John ate.
Kind John fell.
Kind Susan ran.
Kind Susan ate.
Kind Susan fell.
Tal Bob ran.
Tall Bab ate.
Tall Bob fell.
Tall John ran.
Tall John ate.
Tal John fell.
Tal Susan ran.
Tall Susan ate.
Tall Susan fell.
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