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In order to gain insight into the role of substructure in complex systems we investigate

attractor neural network models with substructure. Partially subdivided neural networks enable

the storage of highly correlated states, and may also be useful as a model for brain function. Two

possible biological examples are the separation of color, shape and motion in visual processing,

and the use of parts of speech in language. With this motivation we analyze the ability of

partially subdivided attractor networks to store both imprinted neural states and composite states

formed out of combinations of imprinted subnetwork states. As the strength of intersubnetwork

synapses are reduced more combinations of imprinted substates are recalled by the network. We

perform a mean field analysis of the stability of composite patterns. Analytic solution of the

equations at zero temperature show how stability of a particular composite pattern is controlled

by the number of subdivisions that represent each imprinted pattern. Numerical minimization of

the free energy is used to obtain the phase transition diagrams for networks with 2, 3 or 4

subdivisions.

I. Introduction

Many complex systems have the property that they are formed from substructures that extend

to essentially the same scale as the whole system. The brain is segregated into hemispheres and

lobes and further divided into functional regions. The human body has physiological systems

further divided into organs. Proteins are often organized out of several amino acid chains with

substructure formed of α-helices and β-sheets. Life on earth, considered as a complex system, is

divided among climates, ecosystems, habitats and species. Global weather patterns are formed

out of large scale air and ocean currents, storms and regions of high and low pressure. In all of

these systems the largest scale of subdivision comprises fewer than 100 parts, and more typically

of order 10 parts of the whole system. For biological systems, particularly biological organisms,

the explanation of the substructure must originate from the advantages that accrue to the system

from its presence. Our ultimate objective is to understand the role of functional and structural

subdivision in complex systems.

In this manuscript we begin a systematic investigation of the properties of partially

subdivided neural networks. The advantages of subdivided networks may be considered in the
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context of pattern recognition tasks, the storage of correlated information and as a mechanism for

generalization from a small number of training examples. Subdivided networks also are a model

for the functional structure of the brain. Our construction of partially subdivided networks

consists of a conventional network of N neurons with Hebbian learning where the strength of

synapses between q subdivisions of N/q neurons are reduced by a factor g compared to the

synapses between neurons within each subnetwork. We expect systematic dilution of inter-

subnetwork synapses, with g the fraction of remaining synapses, to lead to similar results.

This paper is organized as follows. Section II provides a brief review of related research on

neural networks. Section III describes qualitatively the properties and possible advantages of

subdivided networks. Section IV is the main body of this article where the mean field equations

for the subdivided networks are derived. They are solved analytically for a particular class of

patterns, called ideal composite patterns, at T=0. The composite patterns are generalized and

followed at T>0 using numerical solutions of the mean field equations to obtain phase diagrams

for their stability. Section V presents brief conclusions and relates this work to other complex

systems and their substructure.

II. Related Research on Subdivided Neural Networks

Theoretical analysis of subdivided attractor networks has focused on hierarchical networks

where the interaction between subnetworks is only through the subnetwork magnetization.1-3

Higher levels of the hierarchy are networks of synapses between neuron-like subnetwork

magnetizations. In effect, the inversion degeneracy of subnetwork states is used for the higher

level degrees of freedom. If the magnetization is explicitly normalized to create new Ising spin

variables the states of different subnetworks and different levels of the hierarchy are decoupled.3

When unnormalized, the interactions between subnetwork states are through the magnitude of

the magnetization.2

In a more biologically relevant model, the possibility of training correlations between

subnetwork states was considered by Sutton et al4 in the context of a network hierarchy with

asymmetric synapses between selected neurons in different subnetworks. Our analysis is close in

spirit to that of Sutton et al, however our interest is not only in describing the trained correlation

between subnetwork states but also the stability of states that are formed out of other

combinations of trained subnetwork states. Idiart and Theumann5 considered binary branching

hierarchical networks where all individual spins in subnetworks interact via Hebbian synapses.

They considered the retrieval of network states that differ from the imprinted states only by

inversion of subnetwork states. Our study of composite states in subdivided networks generalizes

their discussions.
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III. Advantages of subdivision

The primary measure of neural network capability is its capacity to store imprinted patterns.

The storage capacity of a neural network increases with the degree of interconnectedness. For a

network where each neuron is connected to every other neuron the number of imprints that can

be recalled N is proportional to the number of neurons N with a constant of proportionality 

somewhat dependent on the particular imprinting rule. When additional imprints are added an

overload catastrophe causes erasure of all information. Subdivision inherently  results in a

decreased storage capacity. Biological evidence indicates that the brain has well defined

functional subdivisions. We are investigating the functional advantages such an architecture

might provide.

A. The left-right universe

Consider first an artificial world composed of pictures with independent (uncorrelated) left

and right halves. A completely connected network is capable of recalling N pictures. However,

if we divide the network into left and right hemispheres, the subdivided network can recall

(αN/2)2 pictures. Since the number of neurons is large this results in a huge increase in effective

storage capacity. Moreover, training the network may be achieved with only (αN/2) imprints.

Since each hemisphere acts independently all possible combinations of left and right halves are

recalled. Of course, if the network were divided top-from-bottom rather than left-from-right the

scheme would not work. The memory would be degraded to (αN/2) patterns and many spurious

patterns would be introduced. The effectiveness of subdivision requires matching to the nature of

information. The key property that motivates subdivision is the independence - the lack of

correlation - between parts of the information. The existence of synaptic connections reflects a

correlation or coupling between distinct pieces of information. The use of subdivision enables a-

priori separation between independent aspects .

B. Artificial neural network applications

Subdivided neural networks have been used in artificial neural network applications for

performing parallel or sequential subtasks. A recent illustrative example for parallel tasks makes

use of a partitioned feed forward network for the recognition of Kanji.6 For this application the

Kanji were separated into components (radicals) by a preprocessing step and independent

recognition tasks were trained and performed on the separated radicals through distinct feed

forward networks. The motivation for subdividing the network as a means of subtask

performance is intuitively clear since, as a first approximation, the large number of Kanji may be

considered to be formed by combining together comparatively few radicals. It is the

independence of the distinct recognition tasks that makes this effective.
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In the event that the tasks are not completely independent the introduction of weak

interactions between the subnetworks should introduce correlations between the subnetwork

functions .

C. Color shape and motion in vision

The human visual system does not take advantage of the two hemispheres of the brain to

divide the visual information right from left because the left and right visual fields are not

independent. Instead, visual processing separates three attributes of the information: color, shape

and motion.7 The implication of this preprocessing step is that these information categories are

partially independent so that, for example, visual fields with the different shapes can have the

same colors. Or, vice versa the same shapes can have different colors. This independence is

genetically coded into the structure of the initial information processing.

The existence of three attribute categories enables a large number of descriptive categories to

be constructed out of a selection of one from each attribute. For example, by separating the color

information to one subnetwork, shape information to the second, and movement information to

the third, it is possible for the network to identify categories such as: RED ROUND MOVING-LEFT,

and RED ROUND MOVING-UP, BLUE SQUARE MOVING-LEFT, and BLUE ROUND MOVING-UP. The

network receiving color information identifies the color, and so on. In a fully connected network

these categories would each require separate identification (and category correlations would

severely impair operation). If the subdivided network were completely separated the total

number of categories would be a product of the number of categories stored in each subnetwork.

Partial subdivision implies correlation between the different attributes is also significant. In

the natural world shape, color and motion are not completely independent attributes. Local

correlation in the visual field such as the coincidence of edges in color and shape maps is only

part of the correlation between these attributes. At higher levels of abstraction / processing there

are important correlations between the overall shape of an object its color and both its direction

and likelihood of motion.

D. Parts of speech - nouns, verbs and adjectives

If subdivision provides advantages in neural networks it should be particularly relevant to

man-made constructs such as language. The subdivided network provides a systematic method

for information organization in terms of elements (the stable states of subnetworks) which are

organized in element-categories (the stable states of a particular subnetwork) and the

compatibility relationships between elements as dictated by the inter-subnetwork synapses. This

is reminiscent of the structure of grammar where nouns, verbs and adjectives and other parts of

speech are categories that have elements and there are compatibility relations among them. It is
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tempting to speculate that different subdivisions of the brain are responsible at least for the major

parts of speech and the ability to combine them in different ways results from weakening the

strength of inter-subnetwork synapses compared to the intra-subnetwork synapses that store

representations of each word. Unlike a dictionary where the grammatical usage of a word is

identified by a label (noun, verb, adjective, etc.) the storage of a word in a particular subdivision

identifies its grammatical usage.

In Fig. 1 an example illustrating a fully connected and fully subdivided network is shown.

The complete network is large enough to be subdivided into three networks each of which can

store three words (coded appropriately). A fully-connected network would then be able to store

nine sentences with three words each since the storage capacity grows linearly with size. On the

subdivided network we could imprint three sentences and twenty-seven sentences would be

recognized. The central difference between the set of sentences that can be remembered by the

full network and the subdivided network is summarized by the concept of 'semantic content' vs.

'grammar.' The complete network knows more full sentences but does not have knowledge of the

divisibility of the sentences into parts that can be put together in different ways. The subdivided

network knows the parts but has no relationship between them, thus it knows grammar but does

not know any context information, like who it is that fell.

The actual process in the human brain is a combination of the two, where sentences make

sense or are 'grammatically correct' if properly put together out of largely interchangeable parts,

but an actual event or recalled incident is a specific combination. This can be captured in the

network by having a partial interconnection between subnetworks. It is to be expected that partial

subdivision leads to an intermediate situation where sentences are constructed out of largely

interchangeable parts, but an actual event or recalled incident is a specific combination. This is

confirmed by the analysis described below.

IV.  Derivation of stability conditions for subdivided networks

We derive and solve the mean field equations for the retrieval of composite states in a

partially subdivided network. Section A reformulates the problem in a separable form suitable for

application of the standard mean field solution for fully connected networks. Section B obtains

the mean field equations using a generalized form of self averaging. Section C obtains the

analytic solution of the mean field equations for the composite patterns at T=0, where the details

of the derivation are given in the Appendix. In Section D we discuss the conventional spurious

patterns that are distinct from the composite patterns but also appear in suitably generalized form

as solutions of the mean field equations. In Section E the stability of the composite patterns at

T=0 is proven using the second derivatives of the free energy. The composite solutions are
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generalized to T>0 in Section F using numerical solutions that obtain phase diagrams for

networks with 2,3, or 4 subdivisions.

A. Formulating the subdivided network in a separable form.

We assume a network comprised of q subnetworks (each containing ′ N = N / q  neurons) that

are fully internally connected but more weakly connected to each other, the ratio of connection

strengths is controlled by a parameter g ∈[0,1]. g=0 corresponds to a completely subdivided

network and g=1 corresponds to a conventional Hopfield network. For arbitrary g the synaptic

connection matrix is written as:

Jij =
′ J ij Integer_part

i

′ N 
 
 

 
 

= Integer_part
j

′ N 
 
 

 
 

g ′ J ij otherwise

 

 
 

  
(1)

The first case corresponds to i and j in the same block along the matrix diagonal, i.e. in the same

subnetwork. ′ J  is the usual Hebbian matrix:

′ J ij =

1

N
ξi

µξ j
µ

µ=1

p

∑ i ≠ j

0 i = j

 

 
 

 
 

(2)

The neural firing patterns {ξi
µ = ±1} are chosen at random, where i ∈{1,…, N},µ ∈{1,…, p}.

We can reformulate this in a more convenient way. First we write:

J = J 0 + J1 (3)

Jij
0 = g ′ J =

g

N
ξi

µξ j
µ

µ=1

p

∑ i ≠ j

0 i = j

 

 
 

 
 

(4)

Jij
1 ≡

1− g

N
ξ i

µγξ j
µγ

µ=1

p

∑
γ=1

q

∑ i ≠ j

0 i = j

 

 
 

 
 

(5)

where we have introduced a set of new "pattern"s ξµγ that are correlated with the original set.

ξµγ  is identical to the pattern ξµ  in the γ th subdivision and zero elsewhere:

ξi
µγ = δi∈Sγ ξi

µ (6)

where
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δi∈Sγ =
1 if i ∈Sγ
0 otherwise

 
 
 

(7)

Sγ ≡ (γ −1)N' +1,..., γN'{ } (8)

γ  takes values from 1 to q throughout the following treatment.

We augment the set of correlated patterns by including the original patterns as

ξi
µ0 ≡ ξi

µ (9)

whenever the case α = 0 is included we use the index α for ξµα  to distinguish it from ξµγ

Eqs. (6)-(8) can be generalized to include this case by introducing S0 ≡ 1,..., N{ } .

Using these definitions the synaptic matrix can be written in a separable form similar in

appearance to the Hebbian form:

Jij =
1

N
ηi

µαη j
µα

µ,α= 0

q

∑ i ≠ j

0 i = j

 

 
 

  
(10)

where ηµα  is proportional to ξµα:

ηi
µ0 ≡ gξ i

µ0 ≡ gξi
µ (11)

ηi
µγ ≡ 1 − gξ i

µγ .

B. Mean field equations: Order parameters and free energy
The energy in the magnetic analog for the neural network has the standard form:

E s{ } = − hi
extsi

i
∑ −

1

2
Jij si

ij
∑ s j (12)

because of the separable form of Jij in Eq. (10), the conventional mean field analysis8 may be

used without modification. This directly leads to the ensemble averaged mean field equations for

the order parameters:

Mµα =
1

N
ηi

µα tanh β( Mνδ

δ= 0

q

∑
ν=1

p

∑ ηi
νδ + hext )

 

 
 

 

 
 

i=1

N

∑ (13)

where the order parameters are ensemble average overlaps of the neural state si  with the patterns

ηµα  defined in the usual way,

Mµα ≡
1

N
ηi

µα

i=1

N

∑ si (14)

Now we formulate a generalization of self-averaging for the case of our correlated patterns. It

applies to any function of these correlated patterns and reads:
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 f ηi
µα{ }µα

 
 
  

 
i=1

N

∑ → ′ N f ηµ0 = gξµ , ηµ ′ γ = 1 − gξµδγ , ′ γ { }µ, ′ γ 

 
 
  

 
ξγ=1

q

∑ (15)

where the double brackets indicate averaging over the quenched random variables ξ. Using this

self averaging and rescaling M
µα

Mµ0 =
g

q
mµ0 (16)

Mµγ =
1 − g

q
mµγ

in Eq. (13) leads to the mean field equations for mµα

mµ0 = ξµ tanh
β
q

gmν0 + 1− g( )mνγ( )ξν

ν
∑ + hext

 

 
 

 

 
 

 

 
 

 

 
 

ξγ=1

q

∑ (17)

mµγ = ξµ tanh
β
q

gmν0 + 1− g( )mνγ( )ξν

ν
∑ + hext

 

 
 

 

 
 

 

 
 

 

 
 

ξ

(18)

note the sum rule:

mµ0 = mµγ

γ=1

q

∑ (19)

Given a solution mµα  of the equations, symmetries guarantee the following transformations

yield new solutions:

mµα → −mµα (20)

for any fixed µ  but for all α  simultaneously;

mµα ↔ mνα (21)

for fixed µ and ν but for all α  simultaneously; and

mµγ ↔ mµ ′ γ (22)

for all µ  simultaneously and any fixed γ , ′ γ . The first two are conventional symmetries and the

third is a renaming of subdivisions resulting in the switching of subdivision order parameters.

The free energy may also be obtained in terms of the order parameters. Substituting Eq. (10)

into Eq. (12) and setting hext = 0  the energy takes the form:

E = −
1

2N
ηi

µαηj
µαsis j

µα
∑

ij,i≠ j
∑ (23)
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then using conventional manipulations8 that define the free energy, introduce the auxiliary fields

Mµα  (or the rescaled mµα ), perform saddle point integrations and self-averaging, this leads to

the free energy

F = g

2q2 (mµ0)2

µ=1

p

∑ + 1 − g

2q2 (mµγ )2

µ=1

p

∑
γ= 1

q

∑

−
1

βq
ln 2cosh

β
q

g(mµ0 + hµ0) + 1− g( )(mµα + hµα)( )ξµ[ ]
µ
∑

 

 
 

 

 
 

ξ
γ=1

q

∑

+
1

2N
gp + (1− g)pq( ) −

p(q +1)

2βN
ln βN( )

 (24)

the last two terms above are negligible when pq/N is small. For g=1, q=1, F is the conventional

free energy. One must remember that this equation makes sense only when used at the minimum

of F with respect to variations in mµα :

∂F

∂mµα = 0 (25)

Eqs. (17) and (18) result from Eq. (25) when we set hµα  (conjugate variables to mµα  ) to zero.

C. Composite pattern mean field solutions at T=0

We intend to investigate the retrieval of composite patterns. At T=0 the composite patterns

assume an idealized form that will be generalized in Section F for T>0. In each subdivision the

ideal composite pattern is the same as one of the imprinted patterns. However in different

subdivisions the pattern may belong to a different imprinted pattern. We can identify a particular

composite pattern by a set of indices {µγ }, µγ  represents the pattern contained in subdivision γ.

A negative valure of µ represents the presence of the inverted pattern -ξµ . The set of

subdivisions where ξµ  occurs are called Aµ  and that of −ξ µ  , Bµ , that is:

Aµ ≡ γ µγ = µ{ }

Bµ ≡ γ µγ = −µ{ }
(26)

By symmetry (Eq. (22)), all rearangements of these indices lead to the same retreival

problem. It is more convenient to characterize the composite patterns by aµ , the number of

subdivisions that contain a particular imprinted pattern, and bµ , the number of subdivisions that

contain its inverse. These numbers can be zero for some µ. There are some immediate identities:

# Aµ = aµ ,# Bµ = bµ (27)
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(aλ + bλ

λ
∑ ) = q ⇒ (Aµ ∪ Bµ ) = 1,…,q{ }

µ
U , (28)

Aµ ∩ Bν = Aµ ∩ Aλ = Bµ ∩ Bλ = ∅ if µ ≠ λ (29)

where # is the set number operator. These identities are useful for evaluating the expressions that

follow. We note that if only one aµ  is non-zero and all bµ  are zero then the composite pattern

corresponds to a particular imprinted pattern.

Using the form of ideal composite patterns described above in the definition of the order

parameters Eq. (14) we derive the following form for the order pararmaters

mµ0 = m(aµ − bµ ) (30)

mµγ =

m if γ ∈Aµ

−m if γ ∈Bµ

0 otherwise

 

 
 

  
(31)

which we will call the ideal composite form. The composite form described above would imply

m=1. We have included the variable m to provide an extra degree of freedom in the equations.

Our analysis of the mean field equations at T=0 will verify that the form Eqs. (30) and (31) is

only possible for m=1.

We insert the ideal composite form of mµα  (Eqs. (30) and (31)) into the mean field equations

(Eqs. (17) and (18)) changing the tanh function to sign function for the T=0 limit. We consider

only the case where hext = 0 . From Eq. (17), for mµ0 we obtain:

m(aµ − bµ ) = ξµsign
1

q
(gmλ0 + 1− g( )mλγ )ξλ

λ
∑

 

 
 

 

 
 

ξγ=1

q

∑ (32)

Eq. (18) for mµβ  separates into two cases depending on whether the order parameter mµγ  is zero

or non zero. If the order parameter is non-zero then we have γ ∈Aµ  or γ ∈Bµ . Eq. (18) then

becomes (+ signs for γ ∈Aµ , – signs forγ ∈Bµ ):

±m = ξµsign
m

q
(g(aλ − bλ )ξλ ) ± (1− g)ξµ

λ
∑

 

 
 

 

 
 

 
 
 

 
 
 ξ

(33)

If the order parameter is zero, then we have γ ∉Aµ ∪ Bµ , we can write γ ∈Aν  or γ ∈Bν  for

some ν ≠ µ . Eq. (18) becomes (+ signs for γ ∈Aν , – signs for γ ∈Bν ):

0 = ξµsign
m

q
(g(aλ − bλ )ξλ ) ± (1− g)ξν

λ
∑

 

 
 

 

 
 

 
 
 

 
 
 ξ

(34)

We can summarize Eqs. (33) and (34) as:
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ξµsign
m

q
(g(aλ − bλ )ξλ ) ± (1− g)ξν

λ
∑

 

 
 

 

 
 

 
 
 

 
 
 ξ

= ±mδµν (35)

In order for the trial solution to be valid this equation must be satisfied, for each µ  and all ν for

which Aν ≠ ∅  (aν ≠ 0 ) for the + sign, and Bν ≠ ∅  (bν ≠ 0) for the - sign. As before, Eq. (32)

is the sum over Eq. (35) and therefore need not to be considered separately in obtaining the

solutions.

Our objective is to solve Eq. (35) for all values of g. We note that Eq. (35) becomes easy to

solve for the cases g=0 and g=1. For g=0 (a totally subdivided network) this equation is always

valid, with m = ±1. Thus, for the totally subdivided network all possible composite patterns are

solutions. For g=1 (a totally connected network) the equations for ν ≠ µ  and ν = µ  have the

same left hand sides and therefore can be made consistent only when we have just one non zero

aµ  or bµ  which then has to be q (in this case ν ≠ µ  should not be considered at all). Thus, for

the totally connected network only the complete imprinted patterns are solutions.

For convenience, we assume in what follows that g ∈ 0,1( )  and divide the argument of the

sign function by g :

ξµsign ((aλ − bλ )ξλ )
λ
∑ ± (

1

g
−1)ξν 

 
 

 

 
 

ξ

= ± m δµν (36)

First we consider the case when all of the bµs are zero

ξµsign aλξλ

λ
∑ + (

1

g
−1)ξν 

 
 

 

 
 

ξ

= m δµν (37)

the goal is to find the range of g for which this is valid for a special choice of {aµ }. When only

one aµ  is non zero (an imprinted pattern) all g values satisfy Eq. (37). For two or more non zero

aµ  the result, after some analysis, is

g < gmax =
1

1+ q − 2amin
  & |m|=1 (38)

Details of the derivation of Eq. (38) are described in the Section A of the Appendix. An alternate

derivation using signal-to noise analysis will be published separately.

For the case when not all bµ  are zero, in Section B of the Appendix we show that the

condition on g becomes

g < gmax =
1

1 + |aλ − bλ|

λ
∑

  & |m|=1 (39)
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This condition applies unless for each µ aµbµ = 0 . When all aµbµ = 0  every imprinted pattern

appears in the composite pattern with only one sign, and by reversing the sign of the patterns that

have bµ≠0 we return to the previous case where all bµ=0. This is verified by the direct analysis in

Section B of the Appendix. Note that Eq. (39) does not reduce to the Eq. (38) simply by taking

bµ=0.

We have shown that at T=0 the ideal composite patterns are solutions of the mean field

equations in the restricted range g < gmax  given by Eqs. (38) and (39). This does not guarantee

that they are minima of the free energy (i.e. stable). In Section E below we will show by direct

computation of the second order derivatives of F (the stability matrix) that they are stable near

T=0 throughout the range of g < gmax . Furthermore, in Section F we solve numerically for the

phase diagrams of minima of F - the range of both g and temperature for which composite

patterns are stable.

It is interesting to consider how the two ranges of g values in Eqs. (38) and (39) compare. To

make this comparison, with no loss of generality, we assume that aµ≥bµ for all µ. Then Eq. (39)

becomes :

g <
1

1+ q − 2 bλ
λ
∑

 & |m|=1 (40)

When all regions of the network that represent a single imprinted state have the same sign, the

value of g is limited by the minimum size of the network representing a particular pattern (Eq.

(38)). However, when patterns are present with inverted portions, the value of g is limited by the

sum over all inverted parts (Eq. (40)). This occurs because the instability of the smallest portion

of the composite pattern arises from the random fields generated by all other imprinted patterns.

A destabilizing field arising from a portion of the network representing another pattern is

coherent because their field tries to reconstruct the remainder of that pattern. However, the

coherent destabilizing field is canceled to the extent that its inverse appears in the composite

state. One way to look at Eq. (39) is that the smallest portion of the composite pattern (minimum

bλ) is strengthened by the other bλ. This result persists to the finite temperature case in Section F.

D. Spurious solutions.

In addition to the composite solutions there are additional solutions of the mean field

equations that correspond directly to the spurious states of fully connected networks. We can

include some of these solutions by generalizing the forms Eqs. (30) and (31) to include a single

variable instead of all previously vanishing parts:
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mµγ ≡ m ×

1 if γ ∈ Aµ

−1 if γ ∈Bµ

e otherwise

 

 

 
 

 

 
 

(41)

mµ0 = m (aµ − bµ ) + e q − (aµ + bµ )( )( )
inserting these inEq (18) results in

m = tanh
βm

q

g(aµ − bµ ) + ge q − (aµ + bµ )( ) ± (1− g)[ ]
+ g(aλ − bλ ) + ge q − (aλ + bλ )( ) + e(1− g)[ ]ξλ

λ≠µ
∑

 

 

 
 

 

 

 
 

 

 
 

  

 

 
 

  

me = tanh
βm

q

g(aµ − bµ ) + ge q − (aµ + bµ )( ) ± e(1− g)[ ]+ (1− g)(1− e)ξν

+ g(aλ − bλ ) + ge q − (aλ + bλ )( ) + e(1− g)[ ]ξλ

λ≠µ
∑

 

 

 
 

 

 

 
 

 

 
 

  

 

 
 

  

(42)

The case e=0 corresponds to the composite solutions that we have already examined. The

symmetric spurious solutions correspond to the case e=1 and Bµ = ∅ . for all µ . In this case the

two equations are identical and simplify to

m = tanh
βm(qg +1 − g)

q
1 + ξλ

λ≠µ
∑

 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  
(43)

or

m = ξµ tanh βmg ( ξλ )
λ
∑

 
 
 

 
 
 

(44)

where

g =
1

q
1+ g q −1( )( ) (45)

is the average synaptic strength. This case corresponds to having all patterns with the same order

parameter in each subdivision. This corresponds to the symmetric spurious patterns that have

been studied for a fully connected network.8 For the partially subdivided network the solutions

are the same as for the fully connected network but with a rescaled temperature β βg  Because

the order parameters are the same in each subdivision only the average synaptic strength plays a
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role. This is the same rescaling as would occur for stability of one of the imprinted patterns, as

discussed in Section F (see Eq. (55)).

In addition to the symmetric spurious patterns there are non-symmetric spurious solutions

that can be identified by taking the limit of Eqs. (17) and (18) at T=0 and g=0. Eq. (17) was

derived by canceling a factor of g on both sides of Eq. (13), in this limit it will be identically zero

and always valid. Eq. (18) reduces to

mµγ = ξµsign mνγξν

ν
∑

 

 
 

 

 
 

ξ

(46)

Since g=0 the subdivisions are independent and different γ s are decoupled. This is the general

equation for mean field solutions for a single network at T=0. The number of subdivisions q

plays no role in determining the form of solutions. The symmetry mµα → −mµα  for any fixed µ
but for all α  simultaneously, reduces to mµγ → −mµγ  for any µ  or γ  independently. In

addition, if for some µ , mµγ  is zero, then for this µ  Eq. (46) is automatically satisfied and it

does not enter the equations for other µ . To find all possible solutions we find the possible sets

of positive mµγ ,µ = 1,…, p{ }  for fixed γ  that are solutions to Eq. (46). By inversion symmetry

we need only consider either the plus or minus sign. Any combination of these for each γ  with

either sign and extra zero elements is also a solution.

The simplest nontrivial solution occurs for p=1 and is m=±1. Adding zeroes and combining

them for different γ 's will generate all of the composite patterns discussed in the previous

section.

Other solutions arise when one considers special combinations of mµγ  in which the sign

function in Eq. (46) vanishes for some of ξµ{ } . Using the relevant convention sign(0)=0 the

averaging results in mµγ < 1. For p=2 the only extra solution of the mean field equations are

mµγ  equal to {±1/2,±1/2}, for p=3 the additional solution is {±1/2,±1/2±1/2}, and for p=4 there

are three other solutions: {±5/8,±3/8,±3/8±1/8}, {±1/2,±1/2,±1/4,±1/4}, {±3/8,±3/8,±3/8,±3/8}.

These solutions correspond to some of the known spurious solutions for a single network.

While they are solutions of Eq. (46), not all are stable. All the patterns for even p are unstable.

Our simulations confirm that they are unstable for every g>0 even at T=0 and evolve to other

solutions. The p=3 solutions are stable. When the p=3 spurious solutions are present in all

subdivisions (all γ ) these are the same symmetric spurious patterns discussed earlier. Combining

spurious solutions with composite solutions in different subdivisions also leads to stable states.

E. Stability matrix

To investigate the stability of the composite patterns we study the eigenvalues of the second

derivative of free energy (Eq. (24)) written in terms of mµα . The first derivatives of F are:
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∂F

∂mµ0 =
g

q2 mµ0 − ξµ tanh
β
q

gmν0 + 1− g( )mνγ( )ξν

ν
∑

 

 
 

 

 
 

 

 
 

 

 
 

ξγ=1

q

∑
 

 

 
 

 

 

 
 

(47)

∂F

∂mµγ =
1− g

q2 mµγ − ξµ tanh
β
q

gmν0 + 1 − g( )mνγ( )ξν

ν
∑

 

 
 

 

 
 

 

 
 

 

 
 

ξ

 

 

 
 

 

 

 
 

(48)

Defining the second derivative matrix

 
∂2F

∂mµα∂mµ'α' ≡ Aµα ,µ'α'  (49)

we derive the different elements as

Aµ0,µ' 0 =
g

q2 δµµ' 1−βg( ) +
βg

q
Qγ

µµ'

γ=1

q

∑
 

 
 

 

 
 (50)

Aµ0,µ' γ ' =
−βg 1− g( )

q3 δµµ' − Qγ
µµ'[ ]

Aµγ ,µ'γ ' =
1 − g

q2 δγγ ' δµµ' −
β 1− g( )

q
δµµ' − Qγ

µµ'( ) 
  

 
  

where we have defined

Qγ
µµ' ≡ ξµξµ' tanh2 β

q
gmν0 + 1− g( )mνγ( )ξν

ν
∑

 

 
 

 

 
 

 

 
 

 

 
 

ξ

(51)

In the limit T → 0 we see that Qγ
µµ' → δµµ'  when the argument of tanh doesn't vanish for any

ξµ{ } .This condition is guaranteed for composite solutions when g < gmax  (with no equal sign)

as shown in Section C of the Appendix. Inserting this limit of Qγ
µµ'  into Eq. (50) implies that for

T → 0 and g < gmax  the second derivative matrix is diagonal with positive eigenvalues. Thus

the composite solutions are stable near T=0.

For the more general case of arbitrary temperature one must find the eigenvalues of A. We

construct B ≡ A −λ I

Bµ0,µ'0 = δµµ' 1− λ( ) −
βg

q
δµµ' − Qγ

µµ'( )
γ=1

q

∑ (52)

Bµ0,µ' γ = −
β 1 − g

q
δµµ' − Qγ

µµ'( )
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Bµγ ,µ'γ ' = δγγ ' δµµ' 1 −λ( ) −
β 1 − g( )

q
δµµ' − Qγ

µµ'( ) 
  

 
  

The determinant of B must be equated to zero to solve for λ . B has a simpler form ( B → B1)

after performing some elementary row and column operations (that do not change the

determinant):

B1
µ0,µ'0 = δµµ' 1− λ( ) 1+

gq

1 − g

 
 
  

 
 (53)

B1
µ0,µ' γ = B1

µγ ,µ'0 = −δµµ' 1−λ( ) g

1− g

B1
µγ ,µ'γ ' = δγγ ' δµµ' 1 −λ( ) −

β 1 − g( )
q

δµµ' − Qγ
µµ'( ) 

  
 
  

In order to make use of this expression it is necessary to know mµα  for T≠0. In the following

section we describe numerical solution of the mean field equations that explicitly determine the

phase boundaries of the stability of various composite states.

F. Phase diagrams of composite states

For T > 0  the ideal composite form of the order parameters, Eqs. (30) and (31), must be

modified because it includes only one unknown m and there are two or more equations to be

satisfied (Eqs. (17) and (18) for different µ  and γ ). These equations are degenerate only at T=0.

For T > 0  we generalize the composite forms by assuming the most general form of mµα . For

each ideal composite pattern the value of the order parameters mµα (T ,g)  are then obtained by

continuation from the ideal composite solutions at T=0, g=0. There is a range of g and T over

which the continuation is stable. The boundary of this region is analogous to a phase transition.

The ideal composite patterns at T=0 correspond to the retreival of one and only one imprinted

pattern ξµ  in each subdivision. The order parameter of a particular pattern ξµ  will decrease

(from the value 1 at T=0) at a rate that depends on the number of subdivisions that contain it as

specified by (aµ ,bµ ). Moreover, the existence of a non-zero order parameter for a pattern in one

subdivision will cause a non-zero order parameter for the same pattern in all other subdivisions.

To study the phase transitions of the composite patterns we started with the ideal form of

each composite pattern for g=0 at T=0. Gradually increasing g and T we performed iterative

minimization of the free energy. Conjugate gradient minimization was used to find the closest

local minimum of the free energy with respect to the order parameters mµα . We then located the

temperature for each g at which the composite pattern would no longer be stable (at this point it

will typically evolve discontinuously to other solutions that are stable, if there are any). We

varied each of the mµα  as an independent variable. Care must be taken to break symmetry at
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every step using small random perturbations to mµα  to avoid the conjugate gradient (or steepest

descent) remaining upon a saddle surface. The phase diagrams and order parameters that resulted

are illustrated in Figs. 2-7.

Numerical solutions of the mean field equation were performed for the cases q=2,3 and 4. In

each case we took the number of non zero values of aµ  to range from 0 to q, the maximum

allowed in a composite pattern. We specify the form of each composite pattern by the value of

(aµ − bµ )  of each of the patterns (dropping bµ=0 for conciseness). For example, in the q=4 case

[4000] represents a1=4 and a2 =a3=a4 =0. This is one imprinted pattern retrieved in the whole

network. [1111] is the composite pattern with four different patterns retrieved in the four

different subdivisions a1=a2 =a3=a4 =1, [2(1-1)00] is the pattern with a1=2,a2 =b2=1 and

a3=a4 =0. Note that Eq. (28) is satisfied.

For each q we plot phase diagrams showing the transition temperature as a function of g.

Each pattern is stable below its phase transition line. These diagrams enable us to determine

domains in the phase diagram where particular kinds of patterns are stable while others are not.

We also show plots of the order parameters for some of the composite patterns as a function of

temperature at the value g=0.1. We discuss below some conclusions that can be reached from

these diagrams.

The phase transition diagrams show that in all three cases the imprinted patterns are the most

stable. Also their transition line is straight. This can be derived directly using the form of the

order parameters for retrieval of an imprinted pattern {ξν}:

mµγ = mδµν

mµ0 = qmδµν
(54)

in Eqs. (17) and (18). This results in the usual Ising model equation for the order parameter m

with rescaled temperature

m = tanh( ′ β m) (55)

′ β =
β(gq +1− g)

q
.

Thus the pattern is stable for ′ β  greater than 1. Setting ′ β = 1 gives the phase transition line for

the imprinted pattern. As derived numerically ′ T (g) is linear and passes through the points

(g = 0,T = 1/ q) and (g = 1,T = 1).

For the composite patterns there is a hierarchy of descending ranges of stability. As a rule the

composite states that have a set of {aµ} with higher symmetry are stable at higher temperatures.

Specifically patterns with equal aµ  or bµ  have higher stability. For example compare [111] with

[210] and others in the q=3 case. For q=4 compare [2200] with [2110] or others whose transition
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lines are below that of [1111]. Also for q=4 compare [1111] with [(1-1)110] or with [2110] or

with [3100] that are less symmetric.

Comparing [2200] and [1111] shows that among the symmetric patterns those with greater

aµ  are more stable. This is reasonable since the reoccurrence of one pattern in more subdivisions

strengthens its retrieval. However for nonsymmetric patterns, such as [2110] as compared to the

symmetric pattern [1111], increasing aµ  for one of the patterns has the effect of lowering the

stability of the other patterns and thus lowering the stability of the whole composite pattern. This

trend is maintained when going to the pattern [3100] which is even less stable than [2110].

For all cases q=2,3,4 there are distinct composite patterns that appear to have identical

transitions. This usually happens when the value of an aµ  is split between aµ  and bµ . For q=3

the case of [210] and [(1-1)10], and for q=4 the cases of [2200] and [(1-1)(1-1)00], [3100] and

[(2-1)100]. Alternatively this can happen when two aµ  are combined into (aµ -bµ) for one

pattern. For q=2 the case of [11] and [(1-1)0], for q=3 the case of [210] and [(2-1)00] and for q=4

the cases of [2200] and [(2-2)000], [2(1-1)00] and [(2-1)100], [3100] and [(3-1)000]. If these

splittings or recombinations change the symmetry of the pattern (as discussed in the previous

paragraph) they do not overlap which indicates the priority of the symmetry (compare [111] with

[(1-1)10], and [2200] with [2(1-1)00]). There are cases where the transition lines are not the

same even without a change in symmetry that are as yet unexplained. For example, compare

[2110] with [2(1-1)00], and [2110] with [(1-1)110]. In these cases the patterns may differ in

symmetries more complicated than the one mentioned above. We have been able to show

analytically the equivalence of the phase transition line for [11] and [(1-1)0]. A general

derivation for all cases has not yet been found.

All transition lines have the same value at g=0. For the fully disconnected network the

pattern in each of subdivisions is retrieved independent of the other subdivisions. Composite

patterns or imprinted patterns have the same transition temperature ′ β = 1. This can be seen also

by setting g=0 in Eqs. (17) and (18) which decouples different γ .

The value of g at which the transition lines reach T=0 agrees in all cases with the analytically

derived value of gmax  given in Eqs. (38) and (39). When a composite pattern has higher gmax  it

has a higher transition temperature for all g (or a higher transition g for all T). However, in many

cases composite patterns with the same gmax  have different transition temperatures in the range

0 < g < gmax .

Plots of the order parameters, Figs. 3, 5 and 7, show that the phase transition for the

imprinted patterns are second order but for composite patterns they are all of first order. The

plots shown are all for the same value of g=0.1. The height of the discontinuity in the order

parameters increases as a function of g. Starting from a value of zero at g=0 it always reaches the

value ∆m = 1 at gmax .
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V. Conclusions

We have analyzed the retrieval of composite patterns in a partially subdivided network. The

existence of composite solutions of the mean field equations shows that imprinting patterns on a

partially subdivided network results in retrieval of an expanded set of composite patterns. The

kind of composite patterns that are retrieved depends on the strength of the synapses between the

subdivisions.

The degree of functional localization in the brain has long been a controversial subject. We

have attempted to provide a framework in the context of the theory of attractor networks in

which questions about functional separation and its utility may be formulated in a more precise

language. The expansion of memories from the training set to the set of combinations of trained

subnetwork states is a strategy for generalization by the network that may be used to incorporate

prior knowledge about correlations. Conventional attractor networks generalize because training

corresponds to creating a local minimum in the vector space of network states -- the basin-of-

attraction of this state becomes its generalization. Partially subdivided networks generalize by

recognizing various combinations of substates. Since the network has been trained on far fewer

states than it recognizes it may be said to have generalized from the training set to the set of

recognized states. This is an advantage if the architecture of subdivision is in direct

correspondence to the information to be represented. This is a first step to understanding various

aspects of generalization and creativity in the form of combining aspects of learned information

in new ways.

The use of a combinatorial expansion of substates of a particular complex system is not

restricted to neural networks. Another example exists in the function of the immune system9

where the genetic code for the immune cell receptors that detect antigen are formed from a set of

seven pieces taken from the cell genetic code. The set of imprinted states ξ is analogous to the

possible sequences of each of the DNA segments, and the state of the receptor becomes a

composite state. This combination of different pieces into composites enables the cells to

construct a large variety of receptors from a small set of initial components. Interactions between

the different DNA components arise because of the process of expression of the gene. The final

structure of a receptor relies upon all of the genetic components which therefore interact - they

are not fully independent. This has a similar flavor to the consideration of partially subdivided

networks.
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Appendix: Range of Stability of Composite Patterns at T=0

In this Appendix we describe the solution of the zero temperature mean field equations for the

composite patterns (Eq. (36)). In Section A we prove Eq. (38) which applies to the composite

patterns for which every stored pattern appears with only one sign. With no loss of generality this

can be restated as bν 0  for all ν. In Section B we prove Eq. (39) which applies to the more

general case where some patterns appear with both signs in the composite pattern. These sections

only describe the validity of composite patterns as solutions of the mean field equations, Eqs. (17)

and (18). In Section IV.E of the text we prove that the composite patterns are memories - stable

states near T=0 of the neural dynamics - by showing that the eigenvalues of the second derivative

matrix of the free energy are all positive. In Section C of this Appendix we prove an inequality that

is needed in the analysis of Section IV.E.

We note that any imprinted patterns that do not appear in the composite state do not affect the

mean field solutions at low storage. These patterns satisfy aν = bν = 0. In solving Eq. (36) we

first perform the summation and averaging on all ξν  for which aν = bν = 0, since these have no

effect. In what follows we consider only the set of ν for which aν  or bν  is non zero

(aν + bν ≠ 0).

A. Composite patterns with all bν 0

The relevant equation to be solved, after setting all bν  equal to zero in Eq. (36), is Eq. (37).

The objective is to find the range of g for which this equation is valid for a particular choice of

{aµ }. The result is Eq. (38), where amin represents the smallest non zero aµ . This form is valid

when two or more aµ  are non zero. The case of exactly one non zero aµ  is discussed in the text

following Eq. (37): when only one aµ  is non zero all g ∈[0,1] satisfy Eq. (37). In the rest of this

section we assume that two or more aµ  are non zero.

We first rewrite Eq. (37) for the two cases µ≠ν , µ=ν and take ξµ  inside the sign function

sign aµ + aλξλ

λ≠µ
∑ + (

1

g
−1)ξν

 

 
 

 

 
 

ξ

= 0 (A1)

sign aµ + aλ ξλ

λ≠µ
∑ + (

1

g
−1)

 

 
 

 

 
 

ξ

= m (A2)

Since

aλξλ

λ≠µ
∑ + (

1

g
−1)ξν

changes sign whenever ξ{ } → −ξ{ } , and aµ  is positive, Eq. (A1) is valid if and only if:
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aµ − aλξλ

λ≠µ
∑ + (

1

g
− 1)ξν < 0 (A3)

for all ξ{ }  and for all µ . In a similar way if we want a nontrivial solution with m ≠0 Eq. (A2) is

valid if and only if for some ξ{ }

aµ + (
1

g
−1)− aλξλ

λ≠µ
∑ > 0 (A4)

The number of ξ{ }  satisfying Eq. (A4) determines the magnitude of m . This number must be the

same for all µ . This originates in the ideal composite form where we assumed that the magnitude

of mµγ is independent of µ .

The inequalities (A3), (A4) may be solved to obtain the range of g in which they are valid.

Inequality (A3) implies that for every µ  and ξ{ } , and for every ν ≠µ  either

aµ + (
1

g
−1)ξν + aλξλ

λ≠µ
∑ < 0  or aµ − (

1

g
−1)ξν + aλξλ

λ≠µ
∑

 

 
 

 

 
 < 0 (A5)

must be satisfied. It is sufficient to consider ξν =1 because these two inequalities transform into

each other under the transformation ξ{ } → −ξ{ } . Then we derive the equivalent constraints as

either

aµ < (
1

g
−1) + aλξλ

λ≠µ
∑

 
or

 
aµ < − (

1

g
− 1)+ aλ ξλ

λ≠µ
∑

 

 
 

 

 
 (A6)

Since we have set ξν =1 at least one ξλ  must be equal to one in the sum aλξ
λ

λ≠µ
∑ . The inequalities

in (A6) lead to the following compound logical statement.

For every µ  and every ξ{ }with at least one ξλ  (λ≠µ) equal to one

either aλξλ

λ≠µ
∑ ≥ aµ (P1a)

or g <
1

1+ aµ − aλξλ

λ≠µ
∑

(P1b)

or aλξλ

λ≠µ
∑ < −aµ  and g >

1

1− aµ − aλξλ

λ≠µ
∑

(P2)

and also for every µ there exist some ξ{ }such that

either aλξλ

λ≠µ
∑ ≤ aµ  (P3a)
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or  g <
1

1− aµ + aλξλ

λ≠µ
∑

 . (P3b)

The number of patterns that satisfy (P3a) or (P3b) determines the magnitude of m . More

precisely for each µ, if the number of ξ{ }  satisfying (P3) is K  then m  derived from (A2) is equal

to K / 2 ˆ p  where ˆ p  is the number of non zero aµ. This statement is composed out of several

conditions. (P1a) and (P1b) arise from the first part of Eq. (A6) and (P2) arises from the second

part of Eq. (A6). (P3) results from a similar analysis of (A4). In what follows we show that (P2)

is never satisfied for m ≠0. We assume this result for the moment. Then (P1a) or (P1b) must be

true for all µ and ξ{ } . The range of acceptable g values is determined by the value of µ and the

pattern ξ{ }  that sets the most restrictive limits using (P1a) or (P1b). This is obtained by

considering the particular ξ{ }  for which only one ξν = 1 where aν  is minimal and all other

ξλ = −1 , λ ≠ ν . Then (P1) results :

g < gmax ≡
1

1+ aλ
aλ≠ amin

∑ − amin
 (A7)

which is the first part of Eq. (38). Moreover, for this range of g (P3b) will be automatically

satisfied for all ξ{ }  thus m =1. This is the second part of Eq. (38).

It remains to be demonstrated that condition (P2) can never be satisfied. We note that (P2) and
(P3) are mutually exclusive. When m  is non zero (P3) must be true for some ξ{ }  thus (P2)

cannot be true for all ξ{ } . There remains the possibility that for some µ  there exists a ξ{ }  (the set

of these is denoted as ξ{ }{ }P2
), for which (P2) is valid, and for the rest (P1) is satisfied (denoted

by ξ{ }{ }P1
). Some of the ξ{ }  in ξ{ }{ }P1

 must satisfy (P3). The sets ξ{ }{ }P1
 and ξ{ }{ }P2

 may

be µ dependent.

We begin by considering only the µ for which aµ  has its largest value. If there is more than

one µ with the maximal value of aµ  anyone of them may be used. We begin by assuming a non-

empty set ξ{ }{ }P2
 and demonstrate a contradiction.

Since condition (P2) gives a lower limit on g and condition (P1) gives an upper limit on g the

of a non-empty set ξ{ }{ }P2
 implies a range for g of the form gmax

P2 < g < gmin
P1 . In this range m

would be less than one. Here gmax
P2  is the maximum of

1

1 − aµ − aλξλ

λ≠µ
∑

(A8)

over the set ξ{ }{ }P2
. This expression reaches its maximum value when the sum aλξ

λ

λ≠µ
∑ in the

denominator is maximal over ξ{ }{ }P2
. We call this maximum value Σmax

P2  and a pattern for which
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the maximum value is attained ξ{ }max
P2

. Similarly we define Σmin
P1  as the minimum of aλξ

λ

λ≠µ
∑

over ξ{ }{ }P1
 and a pattern for which the minimum value is attained ξ{ }min

P1
.

There are two possibilities depending on whether ξ{ }min
P1

 satisfies (P1a) or (P1b). If ξ{ }min
P1

satisfies (P1a) then all members of ξ{ }{ }P1
 must satisfy (P1a). In this case gmin

P1 =1; applying

(P1a) to ξ{ }min
C1

 and applying the first part of (P2) to ξ{ }max
P2

 we have that Σmin
P1 −Σ max

P2 > 2aµ .

The other possibility is that ξ{ }min
P1

 satisfies (P1b), then gmin
P1  is the minimum of

1

1 + aµ − aλ ξλ

λ≠µ
∑

(A9)

over ξ{ }{ }P1
. Applying (P1b) to ξ{ }min

P1
 and applying the second part of (P2) to ξ{ }max

P2
, and

using gmin
P1 > gmax

P2  we still have that Σmin
P1 −Σ max

P2 > 2aµ , which therefore applies in all cases.

When we apply Σmin
P1 −Σ max

P2 > 2aµ  to the µ for which aµ is the largest we find

Σmin
P1 −Σ max

P2 > 2amax (A10)

This is impossible as we now demonstrate. The pattern ξ{ }max
P2

 has at least one ξλ=-1 because it

satisfies the first inequality in (P2). By changing the sign of this particular ξλ  we arrive at a new

pattern which must be in ξ{ }{ }P1
. The value of aλξ

λ

λ≠µ
∑  for this pattern is equal to Σmax

P2 + 2aλ ,

so Σmin
P1  which is the minimum of all sums over ξ{ }{ }P1

, must be less than or equal to

Σmax
P2 + 2aλ  which contradicts (A10). This proves the assertion that ξ{ }{ }P2

 is a null set for this

special µ . This shows that for the particular µ for which aµ  is maximal (P2) can never be valid .

For the case where aµ  is maximal we have shown that the condition (P1) applies to any pattern

ξλ{ } . We consider the application of (P1) to a specially constructed pattern. In this pattern ξλ{ }  is

+1 only for one particular ν and -1 for all the others. The value ν is chosen to be one of the ν for

which aν  achieves its minimum (non zero) value. By inspection, the specially constructed pattern

can not satisfy (P1a), it must therefore satisfy (P1b). (There is one special case where it satisfies

(P1a), i.e. when a1 = a2 = q / 2 , however (P1b) gives no additional restriction for this case, so

we could say it is valid). This gives the most limiting condition on the value of g. Not only is this

the most limiting from all patterns for this µ, but also for all µ (it is equivalent to the condition we

have previously obtained in Eq. (A7)). This implies that for all µ (P1) must be satisfied for all

patterns and rules out (P2) for any µ, completing the proof.
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B. Composite patterns with at least one  such that aν 0,b ν 0 .

For the general case of non zero aµ  and bµ  we start from Eq. (36) We first absorb the sign of

aλ − bλ  into ξλ  and define dλ ≡ aλ − bλ

sign(aµ bµ ) ξµsign dλξλ

λ
sign(a ν bν)(

1

g
1)ξν

ξ

m δµν (B1)

or

ξµsign dλξλ

λ
∑ ± sign(aν − bν )(

1

g
−1)ξν 

 
 

 

 
 

ξ

= ± sign(aµ − bµ )[ ] m δµν (B2)

In these equations the choice of ± on the left and right are coupled. As explained in the main text

after Eq. (35) the equations must be satisfied for all ν with a + sign when Aν ≠ ∅  (aν ≠ 0 ) and

with a – sign when Bν ≠ ∅  (bν ≠ 0). If both aν ≠ 0  and bν ≠ 0 then the equation must be

satisfied with both signs. Combining this sign with the factor sign(aν − bν ) we define a variable
sν ≡ ±sign(aν − bν ) (B3)

sν  takes the value +1 when only one of (aν, bν) are not zero or equivalently aνbν = 0 . sν takes

both possible values ±1 when aνbν ≠ 0  (when they are both non-zero). It has been assumed that at

least one is not zero, or aν + bν ≠ 0. This leads to the equations

sign dµ + dλξλ

λ≠µ
∑ + sµ (

1

g
−1)

 

 
 

 

 
 

ξ

= sµ m (B4)

sign dµ + dλξλ

λ≠µ
∑ + sν(

1

g
−1)ξν

 

 
 

 

 
 

ξ

= 0 µ ≠ ν (B5)

The only difference between Eqs. (B4), (B5) and Eqs. (A1) and (A2), besides renaming aν  as

dν, is the occurrence of the factor sν  on both sides and the possibility of zero dν for nontrivial

cases i.e. when aν + bν  is non zero. These differences will modify the results. Repeating the

analysis of Section A following Eqs. (A1) and (A2) we arrive at logical conditions that are

analogous to conditions (P1)-(P3). Before proceeding we note that if there is only one non-zero

aν + bν  the case µ ≠ ν  doesn't apply and only the case µ = ν  must be considered (see discussion

after (B6)).

5



The set of conditions that must be satisfied by patterns ξ{ }  are conditions (Q1)-(Q4):

Either dλ ξλ

λ≠µ
∑ ≥ dµ  (Q1a)

or g <
1

1+ dµ − dλξλ

λ≠µ
∑

(Q1b)

or dλ ξλ

λ≠µ
∑ < −dµ  and g >

1

1− dµ − dλξλ

λ≠µ
∑

. (Q2)

This must be applied when there is at least one non zero aν + bν  with µ ≠ ν . There are two

possible scenarios. If for all λ ≠ µ  aλbλ = 0  (Q1)-(Q2) must be satisfied only for ξ{ }  with at least

one ξλ  equal to one (λ ≠ µ). Otherwise for each µ the conditions (Q1)-(Q2) must be satisfied for

all patterns. The former case is the same as Eq. (P1) and (P2) in part 1 with aν  replace by dν The

latter is more restrictive and arises from a consideration of the effect of sν .

Also for each µ, if aµbµ = 0  then there exist some ξ{ }such that :

either dλ ξλ

λ≠µ
∑ ≤ dµ (Q3a)

or g <
1

1− dµ + dλξλ

λ≠µ
∑

 (Q3b)

If aµbµ ≠ 0  then consideration of the factor sµ results in replacement of condition (Q3) by

g <
1

1+ dµ + dλξλ

λ≠µ
∑

 (Q4)

the number of patterns that satisfy (Q3) or (Q4) determines the magnitude of m  which must be the

same for all µ.

We note the resemblance between (P1)-(P3) and (Q1)-(Q3). They differ in two ways: (1) that

aµ  has been replaced by dµ  and (2) the extra condition after (Q2). Thus if for all µ, aµbµ = 0

then (Q1)-(Q3) results in the limit analogous to (A7):

g <
1

1+ dλ
λ
∑ − 2dmin

(B6)

This is identical to Eq. (38) with amin  generalized to dmin  which can be either an aµ  or a bµ .

This reflects the inversion symmetry Eq. (20).

6



For the more general case the existence of at least one pattern for which both aµ  and bµ are non

zero allows us to apply the conditions (Q1) and (Q2) to all ξ{ }  and to obtain the limit of Eq. (39)

on g

g <
1

1+ dλ
λ
∑

(B7)

An interpretation of this expression and comparison to Eq. (38) is given in the text.

To prove (B7) in the case when there is only one non zero aµ + bµ  we can only apply (Q4)

which by itself will result in (B7). Otherwise if there are more than one non zero aµ + bµ  we first

consider the conditions resulting from the largest dµ .

If the largest dµ  is zero then all dµ  are zero. Applying (Q1)-(Q3) gives no additional restriction

on g<1 and also ensures that m =1. This is consistent with the general result (B7).

When the maximum dµ  is non zero instead of (Q3) we must apply (Q4) and we can rule out

(Q2) for this special µ the same way we treated (P2) in Section A. Thus for the maximum dµ  (Q1)

must be valid. For the following analysis there are two possibilities. Either there exists a ν ≠ µ  for

which aνbν ≠ 0  or there is no such ν. In the former case it does not matter weather aµbµ ≠ 0 . In

the latter case we know that aµbµ ≠ 0 .

If there exists a ν not equal to µ for which aνbν ≠ 0  then the second possibility following (Q2)

holds and we must apply (Q1) to all ξ{ } , including the ξν=–1 for all ν. This directly gives (B7).

When there is no such ν ≠ µ  for which aνbν ≠ 0  the first possibility following (Q2) holds for

µ and we only apply (Q1) to those ξ{ }with at least one ξλ  equal to +1 for some λ ≠ µ  . In this

case the lowest limit for g derived from (Q1) is of the form (B6). However we must still consider

the limits established by considering other µ for which dµ is not maximum.

We consider any other non zero dλ which we call dµ' . Then either aµ' = 0  or bµ' = 0. For

this µ' the second possibility following (Q2) applies and (Q1) or (Q2) must be applied to all ξ{ } .

Considering again the pattern ξν=–1 for all ν, this pattern can not satisfy (Q2) because it gives a

lower bound for g of the form

 g >
1

1+ dλ
λ
∑ − 2dµ'

(B8)

which is outside the range already derived (see (B6)). Thus this pattern must satisfy (Q1b) which

is same as (B7).

Finally we note that the condition (B7) on g implies that for all ξ{ }  and for all µ (Q3) or (Q4)

are satisfied, so m =1. This completes the proof of Eq. (39).
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C. Stability of Composite Patterns at T=0:

As shown in Section E the stability matrix has elements of the form Eq. (50). To find the

eigenvalues of this matrix at T=0 we find the limit of Qγ
µµ' , defined in Eq. (51), at zero

temperature.

First we prove that in this limit and for the ideal composite patterns in the range of g specified

by Eqs. (38) and (39) the argument of tanh is non zero for any choice of ξ{ } . For simplicity we

call this argument βΑγ ξ{ }( )  such that Eq. (51) can be rewritten as

Qγ
µµ' ≡ ξµξµ' tanh2 βΑγ ξ{ }( )( )

ξ
(C1)

where

Α γ ξ{ }( ) ≡
1

q
gmλ0 + 1− g( )mλγ( )ξλ

λ
∑

 

 
 

 

 
 

 

 
 

 

 
 (C2)

To prove this is non zero we first insert the form of the ideal composite patterns from Eqs. (30)

and (31) in Eq. (C2). To write the result in a form already used in this Appendix in Eqs. (A2) and

(B4), we factor out gξν  ( ν is defined by the condition γ ∈ Aν ∪ Bν( )). With no loss of generality

we absorb the sign of aλ − bλ  into ξλ and rename ξνξλ  as ξλ . Thus we derive

Α γ ξ{ }( ) =
gmξν

q
dν + sν(

1

g
−1) + dλξλ

λ≠ν
∑

 

 
 

 

 
 (C3)

The terms in the parenthesis in Eq. (C3) are identical to the argument of the sign function in Eq.

(B4). We already proved that if g is in the limits specified Eqs. (B6) and (B7) then m=1. Using

Eq. (B4) this shows that the term in the parenthesis of Eq. (C3) is positive for all ξ{ } . Thus

Α γ ξ{ }( )  is non zero for all ξ{ }  as claimed.

Finally, to obtain the limit of Qγ
µµ'  as T → 0 , we can use the expression

lim
β→∞

tanh2(βx) = 1 − 4e−2β x  (C4)

for any non zero x that is independent of β to prove that

lim
β→∞

Qγ
µµ' = δµµ' +ϑ (e−β ) (C5)

Using this limit in Eq. (50) Section IV.E shows that the stability matrix is diagonal with positive

eigenvalues.
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Figure Captions:

Fig. 1: Illustration of the use of subdivided networks in the context of language. A fully

connected network with enough neurons to store exactly nine sentences shown on the left may be

imprinted with and recognize these sentences. If the network is divided into three parts it may be

imprinted with only three sentences (center). However, because each subnetwork functions

independently, all possible twenty-seven combinations of words shown to the right are recognized.

Comparing left and right columns suggests the difference between semantics and grammar in

sentence construction.

Fig. 2: The transition temperature as a function of subdivision connectivity g in a network with

two subdivisions (q=2) for an imprinted pattern, [20], and the two possible composite patterns.

[11] is the composite pattern with two distinct imprinted patterns in each of the subdivisions. [(1-

1)0] is the composite pattern formed out of one imprinted pattern in one subdivision and its own

inverse in the other. Below each curve the corresponding pattern is stable and above it the pattern is

unstable. The transition temperatures for [11] and [(1-1)0] coincide at all values of g. This can be

proven analytically by analysis of the free energy, Eq. (23). Other cases of overlapping phase

diagrams occur for different composite patterns for larger values of q. The phase diagrams for q=3

and 4 are shown in Figs. 4 and 6 respectively.

Fig. 3: Order parameters mµα  as a function of inverse temperature (β ) for the imprinted

pattern and two composite patterns. The figures show the behavior of the order parameter on the

g=0.1 cross section of the phase diagram of Fig. 2. (a) The imprinted pattern [20]: The retrieval of

the first imprinted pattern is illustrated so the order parameters for the second stored pattern (m2α )

are zero at all temperatures. (b) The composite pattern [11]: The composite pattern is constructed

from the first imprinted pattern in the first subdivision and the second imptinted pattern in the

second subdivision, so m11 = m22 = 1 at T->0 (β  large), (see Eq.(38)) and m12 = m21 = 0 in the

same limit. For T > 0  these patterns dominate in their respective subdivisions but there is some

cross over. (c) the composite pattern [(1-1)0]: The composite pattern is constructed from the first

imprinted pattern dominating in the first subdivision and its inverse in the second subdivision, so

m11 = 1,m12 = −1  and m2α =0 at T->0 (β  large). It is possible to map the order parameters of the

composite pattern [(1-1)0] onto the order parameters of the composite pattern [11] showing the

equivalence of the phase transition temperature in the two cases.

The order parameters undergo phase transitions at value of β corresponding to the value of the

transition temperature at g=0.1 in Fig. 2. For the imprinted pattern (a) the transition is second

order. For the composite patterns the transitions are first order and more detailed analysis shows

that it occurs when the local energy minimum changes to a saddle point. In all cases in the limit T-

1



>0 (β  large) non-zero mµγ s become 1. Note that mµ0  is the sum of mµγ  s for each µ . The

values of the free energy F at the minimum are also plotted. F changes only very slowly with

temperature. Most of the small change occurs near the transition temperature.

Fig. 4: Similar to Fig. 2 phase transition diagram for.imprinted and composite patterns in a

network with three subdivisions (q=3). Here there are more composite patterns in addition to the

imprinted pattern ([300]). [111] is the composite pattern with three distinct imprinted patterns

retrieved in the three subdivisions. [210] is the composite pattern with the first imprinted pattern

retrived in two of the subdivisions, the second imprinted pattern is retrieved in the other

subdivision, no other imprinted patterns are retreived. [[(1-1)10] is similar to [210] except that in

the second subdivision the first imprinted pattern is inverted. Finally [(2-1)00] is the pattern that is

formed out of a single imprinted pattern but with one of the subdivisions inverted. The transition

temperatures of all the composite patterns except [111] appear to coincide. The T=0 transition point

of all of the composite patterns agrees with the analytical results Eqs.(39) and (40) which give

gmax=0.5.

Fig. 5: Order parameters plotted as a function of inverse temperature β at the value g=0.1 for

(a) the imprinted pattern and (b)-(e) several of the composite patterns of a network with q=3

subdivisions. See Fig. 4 for the phase transition diagram. Compare with Fig. 3. All of the

composite patterns undergo first order transitions while the imprinted pattern has a second order

transition.

Fig. 6: Phase transition diagram for.imprinted and composite patterns in a network with three

subdivisions (q=4) (Compare Figs. 2 and 4). The notation for patterns are similar to Fig. 4. The

composite patterns fall into two groups according to the prediction of Eq.(39) and Eq.(40), those

with gmax =1 and those with gmax=1/3 for their g intersect. The region near g=0, β=0 is enlarged

in (b).

Fig. 7: Order parameters plotted as a function of inverse temperature β at the value g=0.1 for

(a) the imprinted pattern and (b)-(e) several of the composite patterns of a network with q=4

subdivisions. See Fig. 5 for the phase transition diagram. Compare with Figs. 3 and 5.
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Fully connected network Subdivided network

Imprinting and Retreival Imprinting Retreival
Big Bob ran. Big Bob ran. Big Bob ran.
Kind John ate. Kind John ate. Big Bob ate.
Tall Susan fell. Tall Susan fell. Big Bob fell.
Bad Sam sat. Big John ran.
Sad Pat went. Big John ate.
Small Tom jumped. Big John fell.
Happy Nate gave. Big Susan ran.
Mad Dave took. Big Susan ate.
Shy Cathy Slept Big Susan fell.

Kind Bob ran.
Kind Bob ate.
Kind Bob fell.
Kind John ran.
Kind John ate.
Kind John fell.
Kind Susan ran.
Kind Susan ate.
Kind Susan fell.
Tall Bob ran.
Tall Bob ate.
Tall Bob fell.
Tall John ran.
Tall John ate.
Tall John fell.
Tall Susan ran.
Tall Susan ate.
Tall Susan fell.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

[11],[(1-1)0]

[20]
T

g

q=2

Figure 2



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.5 2.5 3.5 4.5 5.5

m
11

F

β

m12

[(1-1)0]

2α
m  = m  =0

10

g=0.1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

m ,m
10   20

F

β

12   21

[11]

m ,m

11   22
m ,m

g=0.1

(b)

-0.5

0

0.5

1

1.5

2

0 2 4 6

m

m =0

10

F

β

2

m ,m
11   12

[20]

α

g=0.1

(a)

(c)

Figure 3



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

[210],[(1-1)10]

[300]

T

g

q=3

[111]
[(2-1)00]

Figure 4



-0.5

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

m

m  =m  =0

10

F

β
2       3

m ,m ,m
11   12   13

[300]

α      α

g=0.1

(a)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

3 5 7 9

m

m

0

F

β
µβ

[111]
µ

m ,m ,m
11   22   33

µ   β≠

g=0.1

-0.5

0

0.5

1

1.5

2

2.5

4 6 8 10

m

m ,m

10

F

β
m13

[210]

α

m20
m23

m ,m11   12

21   22

m  =03

g=0.1

-1

-0.5

0

0.5

1

1.5

4 6 8 10

m

m  =m  =0

10

F

β
2       3

m ,m11   12

[(2-1)00]

α      α

m13

g=0.1

-1

-0.5

0

0.5

1

1.5

4 6 8 10

m

m =m =m =0

20

F

β
10    13     3

m11

[(1-1)10]

α

m
12

m23

m ,m21   22

g=0.1

(b) (c)

Figure 5

(d) (e)



0

0.1

0.2

0.3

0 0.1 0.2 0.3

[2200],[(2-2)000],[(1-1)(1-1)00]
[4000]

[1111]

[2110]

[(1-1)110]

[3100],[(3-1)000]
[2(1-1)00],[(2-1)100]

T

g

q=4(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

[2200],[(2-2)000],[(1-1)(1-1)00]

[4000]

[1111]

T

g

q=4(a)

Figure 6



-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10

m10

m =m =m =02      3      4α     α      α

F
β

m1β

[4000]
g=0.1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

6 7 8 9 10

m 0µ

m
µβ ≠µ   β

F

β

[1111]
g=0.1

m ,m ,m ,m
11   22   33   44

-1

-0.5

0

0.5

1

1.5

2

2.5

8 8.5 9 9.5 10

m
10

m =m =m =m  =m =020    21     22    3       4α      α

F
β

m ,m
11   12

[2(1-1)00]
g=0.1

m24

m23

m ,m
13   14

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10

m =m =m  =m  =0

F
β

10     20    3       4

m ,m
11   23

[(1-1)(1-1)00]

α      α

m ,m
12   24

g=0.1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10

m =m =m =m =0

F
β

10     2      3       4

m ,m
11   12

[(2-2)000]

α      α      α

m ,m
13   14

g=0.1

(a)

(b) (c)

Figure 7

(d) (e)


