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Introduction and Preliminaries

Conceptual Outline

A deceptively simple model of the dynamics of a system is a deterministic
iterative map applied to a single real variable. We characterize the dynamics by look-
ing at its limiting behavior and the approach to this limiting behavior. Fixed points that
attract or repel the dynamics, and cycles, are conventional limiting behaviors of a
simple dynamic system. However, changing a parameter in a quadratic iterative map
causes it to undergo a sequence of cycle doublings (bifurcations) until it reaches a
regime of chaotic behavior which cannot be characterized in this way. This deter-
ministic chaos reveals the potential importance of the influence of fine-scale details
on large-scale behavior in the dynamics of systems. 

A system that is subject to complex (external) influences has a dynamics
that may be modeled statistically. The statistical treatment simplifies the complex un-
predictable stochastic dynamics of a single system, to the simple predictable dy-
namics of an ensemble of systems subject to all possible influences. A random walk
on a line is the prototype stochastic process. Over time, the random influence causes
the ensemble of walkers to spread in space and form a Gaussian distribution. When
there is a bias in the random walk, the walkers have a constant velocity superim-
posed on the spreading of the distribution.

While the microscopic dynamics of physical systems is rapid and complex,
the macroscopic behavior of many materials is simple, even static. Before we can un-
derstand how complex systems have complex behaviors, we must understand why
materials can be simple. The origin of simplicity is an averaging over the fast micro-
scopic dynamics on the time scale of macroscopic observations (the ergodic theorem)
and an averaging over microscopic spatial variations. The averaging can be performed
theoretically using an ensemble representation of the physical system that assumes
all microscopic states are realized. Using this as an assumption, a statistical treatment
of microscopic states describes the macroscopic equilibrium behavior of systems. The
final part of Section 1.3 introduces concepts that play a central role in the rest of the
book. It discusses the differences between equilibrium and complex systems.
Equilibrium systems are divisible and satisfy the ergodic theorem. Complex systems
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are composed out of interdependent parts and violate the ergodic theorem. They have
many degrees of freedom whose time dependence is very slow on a microscopic scale.

To understand the separation of time scales between fast and slow de-
grees of freedom, a two-well system is a useful model. The description of a particle
traveling in two wells can be simplified to the dynamics of a two-state (binary vari-
able) system. The fast dynamics of the motion within a well is averaged by assuming
that the system visits all states, represented as an ensemble. After taking the aver-
age, the dynamics of hopping between the wells is represented explicitly by the dy-
namics of a binary variable. The hopping rate depends exponentially on the ratio of
the energy barrier and the temperature. When the temperature is low enough, the
hopping is frozen. Even though the two wells are not in equilibrium with each other,
equilibrium continues to hold within a well. The cooling of a two-state system serves
as a simple model of a glass transition, where many microscopic degrees of freedom
become frozen at the glass transition temperature.

Cellular automata are a general approach to modeling the dynamics of
spatially distributed systems. Expanding the notion of an iterative map of a single vari-
able, the variables that are updated are distributed on a lattice in space. The influ-
ence between variables is assumed to rely upon local interactions, and is homoge-
neous. Space and time are both discretized, and the variables are often simplified to
include only a few possible states at each site. Various cellular automata can be de-
signed to model key properties of physical and biological systems.

The equilibrium state of spatially distributed systems can be modeled by
fields that are treated using statistical ensembles. The simplest is the Ising model, which
captures the simple cooperative behavior found in magnets and many other systems.
Cooperative behavior is a mechanism by which microscopic fast degrees of freedom
can become slow collective degrees of freedom that violate the ergodic theorem and
are visible macroscopically. Macroscopic phase transitions are the dynamics of the
cooperative degrees of freedom. Cooperative behavior of many interacting elements
is an important aspect of the behavior of complex systems. This should be contrasted
to the two-state model (Section 1.4), where the slow dynamics occurs microscopically. 

Computer simulations of models such as molecular dynamics or cellular
automata provide important tools for the study of complex systems. Monte Carlo sim-
ulations enable the study of ensemble averages without necessarily describing the
dynamics of a system. However, they can also be used to study random-walk dy-
namics. Minimization methods that use iterative progress to find a local minimum are
often an important aspect of computer simulations. Simulated annealing is a method
that can help find low energy states on complex energy surfaces.

We have treated systems using models without acknowledging explicitly
that our objective is to describe them. All our efforts are designed to map a system
onto a description of the system. For complex systems the description must be quite
long, and the study of descriptions becomes essential. With this recognition, we turn
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to information theory. The information contained in a communication, typically a
string of characters, may be defined quantitatively as the logarithm of the number of
possible messages. When different messages have distinct probabilities P in an en-
semble, then the information can be identified as ln(P ) and the average information
is defined accordingly. Long messages can be modeled using the same concepts as
a random walk, and we can use such models to estimate the information contained
in human languages such as English.

In order to understand the relationship of information to systems, we must
also understand what we can infer from information that is provided. The theory of logic
is concerned with inference. It is directly linked to computation theory, which is con-
cerned with the possible (deterministic) operations that can be performed on a string
of characters. All operations on character strings can be constructed out of elemen-
tary logical (Boolean) operations on binary variables. Using Tu r i n g ’s model of compu-
tation, it is further shown that all computations can be performed by a universal Tu r i n g
machine, as long as its input character string is suitably constructed. Computation the-
ory is also related to our concern with the dynamics of physical systems because it ex-
plores the set of possible outcomes of discrete deterministic dynamic systems.

We return to issues of structure on microscopic and macroscopic scales
by studying fractals that are self-similar geometric objects that embody the concept
of progressively increasing structure on finer and finer length scales. A general ap-
proach to the scale dependence of system properties is described by scaling theory.
The renormalization group methodology enables the study of scaling properties by
relating a model of a system on one scale with a model of the system on another
scale. Its use is illustrated by application to the Ising model (Section 1.6), and to the
bifurcation route to chaos (Section 1.1). Renormalization helps us understand the ba-
sic concept of modeling systems, and formalizes the distinction between relevant
and irrelevant microscopic parameters. Relevant parameters are the microscopic
parameters that can affect the macroscopic behavior. The concept of universality is
the notion that a whole class of microscopic models will give rise to the same macro-
scopic behavior, because many parameters are irrelevant. A conceptually related
computational technique, the multigrid method, is based upon representing a prob-
lem on multiple scales.

The study of complex systems begins from a set of models that capture aspects of the
dynamics of simple or complex systems. These models should be sufficiently general
to encompass a wide range of possibilities but have sufficient structure to capture in-
teresting features. An exciting bonus is that even the apparently simple mo dels dis-
cussed in this chapter introduce features that are not typically treated in the conven-
tional science of simple systems, but are appropriate introductions to the dynamics of
complex systems.Our treatment of dynamics will often consider discrete rather than
continuous time. Analytic treatments are often convenient to formulate in continu-
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ous variables and differential equations;however, computer simulations are often best
formulated in discrete space-time variables with well-defined intervals. Moreover, the
assumption of a smooth continuum at small scales is not usually a convenient start-
ing point for the study of complex systems. We are also generally interested not only
in one example of a system but rather in a class of systems that differ from each other
but share a characteristic structure. The elements of such a class of systems are col-
lectively known as an ensemble.As we introduce and study mathematical models, we
should recognize that our primary objective is to represent properties of real systems.
We must therefore develop an understanding of the nature of models and modeling,
and how they can pertain to either simple or complex systems.

Iterative Maps (and Chaos)

An iterative map f is a function that evolves the state of a system s in discrete time

s(t) = f(s(t − t)) (1.1.1)

where s(t) describes the state of the system at time t. For convenience we will gener-
ally measure time in units of t which then has the value 1,and time takes integral val-
ues starting from the initial condition at t = 0.

Ma ny of the com p l ex sys tems we wi ll con s i der in this text are of the form of
Eq .( 1 . 1 . 1 ) ,i f we all ow s to be a gen eral va ri a ble of a rbi tra ry dimen s i on . The gen era l i ty
of i tera tive maps is discussed at the end of this secti on . We start by con s i dering severa l
examples of i tera tive maps wh ere s is a single va ri a bl e . We discuss bri ef ly the bi n a ry
va ri a ble case, s = ±1 . Th en we discuss in gre a ter detail two types of maps with s a re a l
va ri a bl e , s ∈ ℜ, linear maps and qu ad ra tic maps. The qu ad ra tic itera tive map is a sim-
ple model that can display com p l ex dy n a m i c s . We assume that an itera tive map may be
s t a rted at any initial con d i ti on all owed by a spec i f i ed domain of its sys tem va ri a bl e .

1.1.1 Binary iterative maps
There are only a few binary iterative maps.Question 1.1.1 is a complete enumeration
of them.*

Question 1.1.1 Enumerate all possible iterative maps where the system
is described by a single binary variable, s = ±1.

Solution 1.1.1 There are only four possibilities:

s(t) = 1

s(t) = −1

s(t) = s(t − 1)
(1.1.2)

s(t) = −s(t − 1)

1.1
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It is instructive to consider these possibilities in some detail. The main rea-
son there are so few possibilities is that the form of the iterative map we are
using depends,at most, on the value of the system in the previous time. The
first two examples are constants and don’t even depend on the value of the
system at the previous time. The third map can only be distinguished from
the first two by observation of its behavior when presented with two differ-
ent initial conditions.

The last of the four maps is the only map that has any sustained dy-
namics. It cycles between two values in perpetuity. We can think about this
as representing an oscillator. ❚

Question 1.1.2

a. In what way can the map s(t) = −s(t − 1) represent a physical oscillator? 

b. How can we think of the static map, s(t) = s(t − 1), as an oscillator? 

c. Can we do the same for the constant maps s(t) = 1 and s(t) = −1?

Solution 1.1.2 (a) By looking at the oscillator displacement with a strobe
at half-cycle intervals,our measured values can be represented by this map.
(b) By looking at an oscillator with a strobe at cycle intervals. (c) You might
think we could, by picking a definite starting phase of the strobe with respect
to the oscillator. However, the constant map ignores the first value, the os-
cillator does not. ❚

1.1.2 Linear iterative maps: free motion, oscillation, decay
and growth

The simplest example of an iterative map with s real, s ∈ℜ, is a constant map:

s(t) = s0 (1.1.3)

No matter what the initial value,this system always takes the particular value s0. The
constant map may seem trivial,however it will be useful to compare the constant map
with the next class of maps.

A linear iterative map with unit coefficient is a model of free motion or propa-
gation in space:

s(t) = s(t − 1) + v (1.1.4)

at su cce s s ive times the va lues of s a re sep a ra ted by v, wh i ch plays the role of the vel oc i ty.

Question 1.1.3 Consider the case of zero velocity

s(t) = s(t − 1) (1.1.5)

How is this different from the constant map?

Solution 1.1.3 The two maps differ in their depen den ce on the initial va lu e . ❚
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Runaway growth or decay is a multiplicative iterative map:

s(t) = gs(t − 1) (1.1.6)

We can generate the values of this iterative map at all times by using the equivalent
expression

(1.1.7)

which is exponential growth or decay. The iterative map can be thought of as a se-
quence of snapshots of Eq.(1.1.7) at integral time. g = 1 reduces this map to the pre-
vious case.

Question 1.1.4 We have seen the case of free motion, and now jumped
to the case of growth. What happened to accelerated motion? Usually we

would consider accelerated motion as the next step after motion with a con-
stant velocity. How can we write accelerated motion as an iterative map?

Solution 1.1.4 The description of accelerated motion requires two vari-
ables: position and velocity. The iterative map would look like:

x(t) = x(t − 1) + v(t − 1)
(1.1.8)

v(t) = v(t − 1) + a

This is a two-variable iterative map. To write this in the notation of Eq.(1.1.1)
we would define s as a vector s(t) = (x(t), v(t)). ❚

Question 1.1.5 What happens in the rightmost exponential expression
in Eq. (1.1.7) when g is negative?

Solution 1.1.5 The logarithm of a negative number results in a phase i .
The term i t in the exponent alternates sign every time step as one would
expect from Eq. (1.1.6). ❚

At this point,it is convenient to introduce two graphical methods for describing
an iterative map. The first is the usual way of plotting the value of s as a function of
time. This is shown in the left panels of Fig. 1.1.1. The second type of plot,shown in
the right panels, has a different purpose. This is a plot of the iterative relation s(t) as
a function of s(t − 1). On the same axis we also draw the line for the identity map
s(t) = s(t − 1). These two plots enable us to graphically obtain the successive values of
s as follows. Pick a starting value of s, which we can call s(0). Mark this value on the
abscissa. Mark the point on the graph of s(t) that corresponds to the point whose ab-
scissa is s(0),i.e.,the point (s(0), s(1)).Draw a horizontal line to intersect the identity
map. The intersection point is (s(1), s(1)). Draw a vertical line back to the iterative
map. This is the point (s(1), s(2)). Successive values of s(t) are obtained by iterating
this graphical procedure. A few examples are plotted in the right panels of Fig. 1.1.1.

In order to discuss the iterative maps it is helpful to recognize several features of
these maps.First,intersection points of the identity map and the iterative map are the
fixed points of the iterative map:

(1.1.9)    s0 = f (s0)

    s(t) = g t s0 = e ln(g )t s0
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01adBARYAM_29412  3/10/02 10:15 AM  Page 21



Fixed points,not surprisingly, play an important role in iterative maps. They help us
describe the state and behavior of the system after many iterations. There are two
kinds of fixed points—stable and unstable. Stable fixed points are characterized by
“attracting” the result of iteration of points that are nearby. More precisely, there exists
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Figure 1.1.1 T he left panels show the time - de p e nde nt value of the system variable s(t) re-
s u l t i ng from iterative ma p s. The first panel (a) shows the result of itera t i ng the cons t a nt ma p ;
(b) shows the result of add i ng v to the pre v ious value du r i ng each time interval; (c)–(f) sho w
t he result of mu l t i p l y i ng by a cons t a nt g, whe re each fig u re shows the behavior for a differe nt
ra nge of g values: (c) g > 1, (d) 0 < g < 1, (e) 1 < g < 0, and (f) g < 1. The rig ht panels are
a differe nt way of sho w i ng gra p h ically the results of itera t io ns and are cons t r ucted as fo l l o w s.
First plot the func t ion f(s) (solid line), whe re s(t) f(s(t 1)). This can be tho u g ht of as plot-
t i ng s(t) vs. s(t 1). Second, plot the ide ntity map s(t) s(t 1) (da s hed line). Mark the ini-
t ial value s(0) on the ho r i z o ntal axis, and the point on the graph of s(t) that corre s p o nds to
t he point whose abscissa is s(0), i.e. the point (s(0), s(1)). These are shown as squa re s. Fro m
t he point (s(0), s(1)) draw a ho r i z o ntal line to intersect the ide ntity map. The int e r s e c t io n
p o i nt is (s(1), s(1)). Draw a vertical line back to the iterative map. This is the point (s( 1 ) ,
s(2)). Successive values of s(t) are obtained by itera t i ng this gra p h ical pro c e du re. ❚
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a neighborhood of points of s0 such that for any s in this neighborhood the sequence
of points

(1.1.10)

converges to s0. We are using the notation f 2(s) = f(f (s)) for the second iteration,and
similar notation for higher iterations. This sequence is just the time series of the iter-
ative map for the initial condition s. Unstable fixed points have the opposite behavior,
in that iteration causes the system to leave the neighborhood of s0. The two types of
fixed points are also called attracting and repelling fixed points.

The family of multiplicative iterative maps in Eq.(1.1.6) all have a fixed point at
s0 = 0. Graphically from the figures, or analytically from Eq. (1.1.7), we see that the
fixed point is stable for |g| < 1 and is unstable for |g| > 1. There is also distinct behav-
ior of the system depending on whether g is positive or negative. For g < 0 the itera-
tions alternate from one side to the other of the fixed point, whether it is attracted to
or repelled from the fixed point. Specifically, if s < s0 then f(s) > s0 and vice versa, or
sign(s − s0) = −sign(f (s) − s0). For g > 0 the iteration does not alternate.

Question 1.1.6 Consider the iterative map.

s(t) = gs(t − 1) + v (1.1.11)

convince yourself that v does not affect the nature of the fixed point, only
shifts its position.

Question 1.1.7 Con s i der an arbi tra ry itera tive map of the form Eq .( 1 . 1 . 1 ) ,
with a fixed point s0 ( Eq .( 1 . 1 . 9 ) ) . If the itera tive map can be ex p a n ded in

a Tayl or series around s0 s h ow that the first deriva tive

(1.1.12)

characterizes the fixed point as follows:

For |g | < 1, s0 is an attracting fixed point.

For |g | > 1, s0 is a repelling fixed point.

For g < 0, iterations alternate sides in a sufficiently small neighborhood of s0.

For g > 0 ,i tera ti ons remain on one side in a su f f i c i en t ly small nei gh borh ood of s0.

Extra credit: Prove the same theorem for a differentiable function (no Taylor
expansion needed) using the mean value theorem.

Solution 1.1.7 If the iterative map can be expanded in a Taylor series we
write that

(1.1.13)
    f (s) = f (s0) + g (s − s0)+ h (s − s0)2 +…

    

g =
df (s)

ds
s 0

    {s, f (s), f 2(s), f 3(s),…}
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where g is the first derivative at s0, and h is one-half of the second derivative
at s0. Since s0 is a fixed point f(s0) = s0 we can rewrite this as:

(1.1.14)

If we did not have any higher-order terms beyond g, then by inspection each
of the four conditions that we have to prove would follow from this expres-
sion without restrictions on s. For example, if |g | > 1, then taking the mag-
nitude of both sides shows that f(s) − s0 is larger than s − s0 and the iterations
take the point s away from s0. If g > 0,then this expression says that f(s) stays
on the same side of s0. The other conditions follow similarly.

To generalize this argument to include the higher-order terms of the ex-
pansion, we must guarantee that whichever domain g is in (g > 1, 0 < g < 1,
−1 < g < 0, or g < −1), the same is also true of the whole right side. For a
Taylor expansion, by choosing a small enough neighborhood |s − s0| < , we
can guarantee the higher-order terms are less than any number we choose.
We choose to be half of the minimum of |g − 1|, |g − 0| and |g + 1|. Then
g + is in the same domain as g. This provides the desired guarantee and the
proof is complete.

We have proven that in the vicinity of a fixed point the iterative map
may be completely characterized by its first-order expansion (with the ex-
ception of the special points g = ±1,0). ❚

Thus far we have not considered the special cases g =±1,0. The special cases g = 0
and g = 1 have already been treated as simpler iterative maps. When g = 0, the fixed
point at s = 0 is so attractive that it is the result of any iteration. When g = 1 all points
are fixed points.

The new special case g = −1 has a different significance. In this case all points al-
ternate between positive and negative values, repeating every other iteration. Such
repetition is a generalization of the fixed point. Whereas in the fixed-point case we re-
peat every iteration, here we repeat after every two iterations. This is called a 2-cycle,
and we can immediately consider the more general case of an n-cycle. In this termi-
nology a fixed point is a 1-cycle.One way to describe an n-cycle is to say that iterating
n times gives back the same result, or equivalently, that a new iterative map which is
the nth fold composition of the original map h = f n has a fixed point. This descrip-
tion would include also fixed points of f and all points that are m-cycles, where m is a
divisor of n. These are excluded from the definition of the n-cycles. While we have in-
troduced cycles using a map where all points are 2-cycles,more general iterative maps
have specific sets of points that are n-cycles. The set of points of an n-cycle is called
an orbit. There are a variety of properties of fixed points and cycles that can be proven
for an arbitrary map. One of these is discussed in Question 1.1.8.

    

f (s) −s0

s − s0

= g +h (s − s0) +…
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Question 1.1.8 Prove that there is a fixed point between any two points
of a 2-cycle if the iterating function f is continuous.

Solution 1.1.8 Let the 2-cycle be written as

(1.1.15)

Consider the function h(s) = f(s) − s, h(s1) and h(s2) have opposite signs and
therefore there must be an s0 between s1 and s2 such that h(s0) = 0—the fixed
point. ❚

We can also generalize the definition of attracting and repelling fixed points to
consider attracting and repelling n-cycles. Attraction and repulsion for the cycle is
equivalent to the attraction and repulsion of the fixed point of f n.

1.1.3 Quadratic iterative maps: cycles and chaos
The next itera tive map we wi ll con s i der de s c ri bes the ef fect of n on l i n e a ri ty (sel f - acti on ) :

s(t) = as(t − 1)(1 − s(t − 1)) (1.1.16)

or equivalently

f (s) = as(1 − s) (1.1.17)

This map has played a significant role in development of the theory of dynamical sys-
tems because even though it looks quite innocent,it has a dynamical behavior that is
not described in the conventional science of simple systems. Instead, Eq. (1.1.16) is
the basis of significant work on chaotic behavior, and the transition of behavior from
simple to chaotic. We have chosen this form of quadratic map because it simplifies
somewhat the discussion. Question 1.1.11 describes the relationship between this
family of quadratic maps,parameterized by a, and what might otherwise appear to be
a different family of quadratic maps.

We will focus on a values in the range 4 > a > 0. For this range, any value of s in
the interval s ∈[0,1] stays within this interval. The minimum value f(s) = 0 occurs for
s = 0,1 and the maximal value occurs for s = 1/2. For all values of a there is a fixed point
at s = 0 and there can be at most two fixed points, since a quadratic can only intersect
a line (Eq. (1.1.9)) in two points.

Taking the first derivative of the iterative map gives

(1.1.18)

At s = 0 the derivative is a which, by Question 1.1.7,shows that s = 0 is a stable fixed
point for a < 1 and an unstable fixed point for a > 1. The switching of the stability of
the fixed point at s = 0 coincides with the introduction of a second fixed point in the
interval [0,1] (when the slope at s = 0 is greater than one, f (s) > s for small s, and since

    

df

ds
= a(1− 2s)

    s1 = f (s2)

    s2 = f (s1)
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f (1) = 0, we have that f(s1) = s1 for some s1 in [0,1] by the same construction as in
Question 1.1.8). We find s1 by solving the equation

(1.1.19)

(1.1.20)

Substituting this into Eq. (1.1.18) gives

(1.1.21)

This shows that for 1 < a < 3,the new fixed point is stable by Question 1.1.7. Moreover,
the derivative is positive for 1 < a < 2,so s1 is stable and convergence is from one side.
The derivative is negative for 2 < a < 3, so s1 is stable and alternating.

Fig. 1.1.2(a)–(c) shows the three cases: a = 0.5, a = 1.5 and a = 2.8. For a = 0.5,
starting from anywhere within [0,1] leads to convergence to s = 0. When s(0) > 0.5 the
first iteration takes the system to s(1) < 0.5. The closer we start to s(0) = 1 the closer
to s = 0 we get in the first jump. At s(0) = 1 the convergence to 0 occurs in the first
jump. A similar behavior would be found for any value of 0 < a < 1. For a = 1.5 the be-
havior is more complicated. Except for the points s = 0,1,the convergence is always to
the fixed point s1 = (a − 1)/a between 0 and 1. For a = 2.8 the iterations converge to
the same point;however, the convergence is alternating. Because there can be at most
two fixed points for the quadratic map, one might think that this behavior would be
all that would happen for 1 < a < 4.One would be wrong. The first indication that this
is not the case is the instability of the fixed point at s1 starting from a = 3.

What happens for a > 3? Both of the fixed points that we have found,and the only
ones that can exist for the quadratic map, are now unstable. We know that the itera-
tion of the map has to go somewhere, and only within [0,1]. The only possibility,
within our experience, is that there is an attracting n-cycle to which the fixed points
are unstable. Let us then consider the map f 2(s) whose fixed points are 2-cycles of the
original map. f 2(s) is shown in the right panels of Fig. 1.1.2 for increasing values of a.
The fixed points of f (s) are also fixed points of f 2(s). However, we see that two addi-
tional fixed points exist for a > 3. We can also show analytically that two fixed points
are introduced at exactly a = 3:

(1.1.22)

To find the fixed point we solve:

(1.1.23)

We already know two solutions of this quartic equation—the fixed points of the map
f . One of these at s = 0 is obvious. Dividing by s we have a cubic equation:

(1.1.24)    a
3s3 − 2a 3s2 + a2 (1+ a)s + (1 −a 2 ) = 0

    s = a 2s(1− s)(1 −as(1−s))

    f
2(s) = a 2s(1−s)(1− as(1− s))

    

df

ds s1

= 2− a

    s1 = (a −1)/a

    s1 = as1(1− s1)
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We can reduce the equation to a quadratic by dividing by (s − s1) as follows (we sim-
plify the algebra by dividing by a(s − s1) = (as − (a − 1))):

(1.1.25)

Now we can obtain the roots to the quadratic:

(1.1.26)

(1.1.27)

This has two solutions (as it must for a 2-cycle) for a <−1 or for a > 3. The former case
is not of interest to us since we have assumed 0 < a < 4. The latter case is the two roots
that are promised. Notice that for exactly a = 3 the two roots that are the new 2-cycle
are the same as the fixed point we have already found s1. The 2-cycle splits off from
the fixed point at a = 3 when the fixed point becomes unstable. The two attracting
points continue to separate as a increases. For a > 3 we expect that the result of itera-
tion eventually settles down to the 2-cycle. The system state alternates between the
two roots Eq. (1.1.27). This is shown in Fig. 1.1.2(d).

As we continue to increase a beyond 3, the 2-cycle will itself become unstable at
a point that can be calculated by setting

(1.1.28)

    

df 2

ds
s
2

= −1

    
s2 =

(a +1) ± (a +1)(a− 3)

2a

    a
2s2 − a(a + 1)s +(a +1) = 0

    

(as −(a −1)) a3s3 −2a3s 2 +a 2(1+ a)s +(1−a 2)

a3s3 −(a −1)a2s2

−(a + 1)a 2s2 + a 2(1+ a)s +(1−a 2)

−(a +1)a 2s2 + a(1+ a)(a − 1)s

+ a(1+ a)s +(1−a 2)

a2s2 −a(a + 1)s +(a +1)

)
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Figure 1.1.2 (pp. 28-30) Plots of the result of iterating the quadratic map f(s) = as(1 − s)
for different values of a. The left and center panels are similar to the left and right panels of
Fig. 1.1.1. The left panels plot s(t). The center panels describe the iteration of the map f (s)
on axes corresponding to s(t) and s(t − 1). The right panels are similar to the center panels
but are for the function f2(s). The different values of a are indicated on the panels and show
the changes from (a) convergence to s = 0 for a = 0.5, (b) convergence to s = (a − 1)/ a for
a = 1.5, (c) alternating convergence to s = (a − 1)/ a for a = 2.8, (d) bifurcation — conver-
gence to a 2-cycle for a = 3.2, (e) second bifurcation — convergence to a 4-cycle for a = 3.5,
(f) chaotic behavior for a = 3.8. ❚
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to be a = 1 + √6 = 3.44949. At this value of a the 2-cycle splits into a 4-cycle
(Fig. 1.1.2(e)).Each of the fixed points of f 2(s) simultaneously split into 2-cycles that
together form a 4-cycle for the original map.

Question 1.1.9 Show that when f has a 2-cycle, both of the fixed points
of f 2 must split simultaneously.

Solution 1.1.9 The split occurs when the fixed points become unstable—
the derivative of f 2 equals –1. We can show that the derivative is equal at the
two fixed points of Eq. (1.1.27), which we call s 2

±:

(1.1.29)

where we have made use of the chain rule.Since f (s2
+) = s2

− and vice versa, we
have shown this expression is the same whether s2 = s2

+ or s2 = s2
−.

Note: This can be generalized to show that the derivative of f k is the
same at all of its k fixed points corresponding to a k-cycle of f. ❚

The process of taking an n-cycle into a 2n-cycle is called bifurcation.Bifurcation con-
tinues to replace the limiting behavior of the iterative map with progressively longer
cycles of length 2k. The bifurcations can be simulated. They occur at smaller and
smaller intervals and there is a limit point to the bifurcations at ac = 3.56994567.
Fig. 1.1.3 shows the values that are reached by the iterative map at long times—the
stable cycles—as a function of a < ac . We will discuss an algebraic treatment of the bi-
furcation regime in Section 1.10.

Beyond the bifurcation regime a > ac (Fig. 1.1.2(f)) the behavior of the iterative
map can no longer be described using simple cycles that attract the iterations. The be-
havior in this regime has been identified with chaos. Chaos has been characterized in
many ways, but one property is quite generally agreed upon—the inherent la ck of
predictability of the system dynamics. This is often expressed more precisely by de-
scribing the sensitivity of the system’s fate to the initial conditions.A possible defini-
tion is: There exists a distance d such that for any neighborhood V of any point s it is
possible to find a point s′ within the neighborhood and a number of iterations k so
that f k(s′) is further than d away from f k(s). This means that arbitrarily close to any
point is a point that will be displaced a significant distance away by iteration.
Qualitatively, there are two missing aspects of this definition,first that the points that
move far away must not be too unlikely (otherwise the system is essentially pre-
dictable) and second that d is not too small (in which case the divergence of the dy-
namics may not be significant).

If we look at the definition of chaotic behavior, we see that the concept of scale
plays an important role.A small distance between s and s′ turns into a large distance
between f k(s) and f k(s′). Thus a fine-scale difference eventually becomes a large-scale
difference. This is the essence of chaos as a model of complex system behavior. To un-
derstand it more fully, we can think about the state variable s not as one real variable,

    

df 2

ds
s
2

=
df (f (s))

ds s
2

=
df (s)

ds f (s
2
)

df (s)

ds s
2
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but as an infinite sequence of binary variables that form its binary representation s =
0.r1r2r3r4 ... Each of these binary variables represents the state of the system—the value
of some quantity we can measure about the system—on a particular length scale.The
higher order bits represent the larger scales and the lower order ones represent the
finer scales. Chaotic behavior implies that the state of the first few binary variables,
r1r2, at a particular time are determined by the value of fine scale variables at an ear-
lier time. The farther back in time we look, the finer scale variables we have to con-
sider in order to know the present values of r1r2. Because many different variables are
relevant to the behavior of the system, we say that the system has a complex behavior.
We will return to these issues in Chapter 8.

The influence of fine length scales on coarse ones makes iterative maps difficult
to simulate by computer. Computer representations of real numbers always have fi-
nite precision. This must be taken into account if simulations of iterative maps or
chaotic complex systems are performed.
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Figure 1.1.3 A plot of values of s visited by the quadratic map f(s) = as(1 − s) after many
iterations as a function of a, including stable points, cycles and chaotic behavior. The differ-
ent regimes are readily apparent. For a < 1 the stable point is s = 0. For 1 < a < 3 the stable
point is at s0 = (a − 1)/a. For 3 < a < ac with ac = 3.56994567, there is a bifurcation cascade
with 2-cycles then 4-cycles, etc. 2k-cycles for all values of k appear in progressively narrower
regions of a. Beyond 4-cycles they cannot be seen in this plot. For a > ac there is chaotic be-
havior. There are regions of s values that are not visited and regions that are visited in the
long time behavior of the quadratic map in the chaotic regime which this figure does not fully
illustrate. ❚
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Another significant point about the iterative map as a model of a complex system
is that there is nothing outside of the system that is influencing it.All of the informa-
tion we need to describe the behavior is contained in the precise value of s. The com-
plex behavior arises from the way the different parts of the system—the fine and
course scales—affect each other.

Question 1.1.10: Why isn’t the iterative map in the chaotic regime
equivalent to picking a number at random?

Solution 1.1.10: We can still predict the behavior of the iterative map over
a few iterations. It is only when we iterate long enough that the map becomes
unpredictable. More specifically, the continuity of the function f (s) guaran-
tees that for s and s′ close together f (s) and f (s′) will also be close together.
Specifically, given an it is possible to find a such that for |s − s′| < , | f (s)−
f (s′)| < . For the family of functions we have been considering, we only need
to set < /a , since then we have:

(1.1.30)

Thus if we fix the number of cycles to be k, we can always find two points
close enough so that | f k(s′)−f k(s)|< by setting | s − s′|< /ak. ❚

The tuning of the parameter a leading from simple convergent behavior through
cycle bifurcation to chaos has been identified as a universal description of the ap-
pearance of chaotic behavior from simple behavior of many systems. How do we take
a complicated real system and map it onto a discrete time iterative map? We must de-
fine a system variable and then take snapshots of it at fixed intervals (or at least well-
defined intervals). The snapshots correspond to an iterative map. Often there is a nat-
ural choice for the interval that simplifies the iterative behavior. We can then check to
see if there is bifurcation and chaos in the real system when parameters that control
the system behavior are varied.

One of the earliest examples of the application of iterative maps is to the study
of heart attacks. Heart attacks occur in many different ways. One kind of heart at-
tack is known as fibrillation. Fibrillation is characterized by chaotic and ineffective
heart muscle contractions. It has been suggested that bifurcation may be observed in
heartbeats as a period doubling (two heartbeats that are inequivalent). If correct,
this may serve as a warning that the heart structure, due to various changes in heart
tissue parameters, may be approaching fibrillation. Another system where more de-
tailed studies have suggested that bifurcation occurs as a route to chaotic behavior is
that of turbulent flows in hydrodynamic systems.A subtlety in the application of the
ideas of bifurcation and chaos to physical systems is that physical systems are better
modeled as having an increasing number of degrees of freedom at finer scales. This
is to be contrasted with a system modeled by a single real number, which has the
same number of degrees of freedom (represented by the binary variables above) at
each length scale.

    | f (s) − f ( ′ s )| = a | s(1− s)− ′ s (1− ′ s )| = a | s − ′ s ||1 −(s + ′ s )| < a |s − ′ s | <
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1.1.4 Are all dynamical systems iterative maps?
How general is the iterative map as a tool for describing the dynamics of systems?
There are three apparent limitations of iterative maps that we will consider modify-
ing later, Eq. (1.1.1):

a. describes the homogeneous evolution of a system since f itself does not depend
on time,

b. describes a system where the state of the system at time t depends only on the
state of the system at time t – t, and

c. describes a deterministic evolution of a system.

We can,however, bypass these limitations and keep the same form of the iterative map
if we are willing to let s describe not just the present state of the system but also

a. the state of the sys tem and all other factors that might affect its evo luti on in ti m e ,

b. the state of the system at the present time and sufficiently many previous times,
and

c. the probability that the system is in a particular state.

Taking these caveats together, all of the systems we will consider are iterative maps,
which therefore appear to be quite general.Generality, however, can be quite useless,
since we want to discard as much information as possible when describing a system.

Another way to argue the generality of the iterative map is through the laws of
classical or quantum dynamics.If we consider s to be a variable that describes the po-
sitions and velocities of all particles in a system, all closed systems described by clas-
sical mechanics can be described as deterministic iterative maps.Quantum evolution
of a closed system may also be described by an iterative map if s describes the wave
function of the system. However, our intent is not necessarily to describe microscopic
dynamics, but rather the dynamics of variables that we consider to be relevant in de-
scribing a system. In this case we are not always guaranteed that a deterministic iter-
ative map is sufficient. We will discuss relevant generalizations, first to stochastic
maps, in Section 1.2.

Extra Credit Question 1.1.11 Show that the system of quadratic iterative
maps

(1.1.31)

is essentially equivalent in its dynamical properties to the iterative maps we
have considered in Eq. (1.1.16).

Solution 1.1.11 Two iterative maps are equivalent in their properties if we
can perform a time-independent one-to-one map of the time-dependent
system states from one case to the other. We will attempt to transform the
family of quadratic maps given in this problem to the one of Eq.(1.1.16) us-
ing a linear map valid at all times

(1.1.32)    s(t) = m ′ s (t) +b

    s(t) = s(t −1)2 + k
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By direct substitution this leads to:

(1.1.33)

We must now choose the values of m and b so as to obtain the form of
Eq. (1.1.16).

(1.1.34)

For a correct placement of minus signs in the parenthesis we need:

(1.1.35)

or

(1.1.36)

(1.1.37)

giving

(1.1.38)

(1.1.39)

We see that for k < 1/4 we have two solutions. These solutions give all possi-
ble (positive and negative) values of a.

What about k > 1/4? It turns out that this case is not very interesting
compared to the rich behavior for k < 1/4, since there are no finite fixed
points,and therefore by Question 1.1.8 no 2-cycles (it is not hard to gener-
alize this to n-cycles). To confirm this, verify that iterations diverge to +∞
from any initial condition.

Note: The system of equations of this question are the ones extensively
analyzed by Devaney in his excellent textbook A First Course in Chaotic
Dynamical Systems. ❚

Extra Credit Question 1.1.12 You are given a problem to solve which
when reduced to mathematical form looks like

(1.1.40)

where f is a complicated function that depends on a parameter c. You know
that there is a solution of this equation in the vicinity of s0. To solve this equa-
tion you try to iterate it (Newton’s method) and it works,since you find that
f k(s0) converges nicely to a solution. Now, however, you realize that you need
to solve this problem for a slightly different value of the parameter c, and
when you try to iterate the equation you can’t get the value of s to converge.
Instead the values start to oscillate and then behave in a completely erratic

    s = fc (s)

    a = −m = 2b = (1 ± 1− 4k )

    b = (1± 1− 4k )/2

    

2b

m
= −1

    b
2 −b +k = 0

    

′ s (t) = (−m) ′ s (t −1)( −
2b

m

 

 
 

 

 
 − ′ s (t − 1)) +

1

m
(b2 +k − b)

    
′ s (t) = m ′ s (t −1)( ′ s (t −1)+

2b

m
) +

1

m
(b2 +k − b)

    m ′ s (t)+ b = (m ′ s (t − 1)+ b)2 +k
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way. Suggest a solution for this problem and see if it works for the function
fc (s) = cs(1 − s), c = 3.8, s0 = 0.5. A solution is given in stages (a) - (c) below.

Solution 1.1.12(a) A common resolution of this problem is to consider it-
erating the function:

(1.1.41)

where we can adjust to obtain rapid convergence. Note that solutions of

(1.1.42)

are the same as solutions of the original problem.

Question 1.1.12(b) Explain why this could work.

Solution 1.1.12(b) The derivative of this function at a fixed point can be
controlled by the value of . It is a linear interpolation between the fixed
point derivative of fc and 1. If the fixed point is unstable and oscillating, the
derivative of fc must be less than −1 and the interpolation should help.

We can also explain this result without appealing to our work on itera-
tive maps by noting that if the iteration is causing us to overshoot the mark,
it makes sense to mix the value s we start from with the value we get from
fc(s) to get a better estimate.

Question 1.1.12(c) Explain how to pick .

Solution 1.1.12(c) If the solution is oscillating, then it makes sense to as-
sume that the fixed point is in between successive values and the distance is
revealed by how much further it gets each time;i.e., we assume that the iter-
ation is essentially a linear map near the fixed point and we adjust so that
we compensate exactly for the overshoot of fc .

Using two trial iterations, a linear approximation to fc at s0 looks like:

(1.1.43)

Adopting the linear approximation as a definition of g we have:

(1.1.44)

Set up so that the first iteration of the modified system will take you
to the desired answer:

(1.1.45)

or

(1.1.46)

(1.1.47)    (1 − ) =(s0 − s1)/(s2 −s1)

    s0 −s1 =(1− )(f c(s1) − s1) = (1− )(s2 − s1)

    s0 = s1 + (1− )fc (s1)

    g ≡ (s3 − s2 )/(s2 − s1)

    

s2 = f c(s1) ≈ g(s1 − s0)+ s0

s3 = fc (s2) ≈ g(s2 −s0) +s0

    s = hc(s)

    hc(s) = s +(1− )f c(s)
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To eliminate the unknown s0 we use Eq. (1.1.43) to obtain:

(1.1.48)

(1.1.49)

or

(1.1.50)

(1.1.51)

It is easy to check, using the formula in terms of g, that the modified itera-
tion has a zero derivative at s0 when we use the approximate linear forms for
fc . This means we have the best convergence possible using the information
from two iterations of fc . We then use the value of to iterate to convergence.
Try it! ❚

Stochastic Iterative Maps

Many of the systems we would like to consider are described by system variables
whose value at the next time step we cannot predict with complete certainty. The un-
certainty may arise from many sources,including the existence of interactions and pa-
rameters that are too complicated or not very relevant to our problem. We are then
faced with describing a system in which the outcome of an iteration is probabilistic
and not deterministic. Such systems are called stochastic systems. There are several
ways to describe such systems mathematically. One of them is to consider the out-
come of a particular update to be selected from a set of possible values. The proba-
bility of each of the possible values must be specified. This description is not really a
model of a single system, because each realization of the system will do something dif-
ferent. Instead,this is a model of a collection of systems—an ensemble.Our task is to
study the properties of this ensemble.

A stochastic system is generally described by the time evolution of random vari-
ables. We begin the discussion by defining a random variable.A random variable s is
defined by its probability distribution Ps(s′), which describes the likelihood that s has
the value s′. If s is a continuous variable,then Ps (s′)ds′ is the probability that s resides
between s′ and s′ + ds′. Note that the subscript is the variable name rather than an in-
dex. For example, s might be a binary variable that can have the value +1 or −1. Ps (1)
is the probability that s = 1 and Ps (−1) is the probability that s = −1. If s is the outcome
of an unbiased coin toss, with heads called 1 and tails called −1, both of these values
are 1/2.When no confusion can arise,the notation Ps (s′) is abbreviated to P(s), where
s may be either the variable or the value. The sum over all possible values of the prob-
ability must be 1.

(1.2.1)
    

Ps( ′ s ) =1
′ s 

∑

1.2

    = −g /(1− g ) = (s2 − s3)/(2s2 − s1 −s3)
    1− = 1/(1− g)

    (s0 − s1) = (s2 −s1)/(1− g )
    (s2 − s1) = g(s1 − s0)+ (s0 − s1)
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In the discussion of a system described by random variables, we often would like
to know the average value of some quantity Q(s) that depends in a definite way on the
value of the stochastic variable s. This average is given by:

(1.2.2)

Note that the average is a linear operation.
We now consider the case of a time-dependent random variable. Rather than de-

scribing the time dependence of the variable s(t), we describe the time dependence of
the probability distribution Ps (s′;t). Similar to the iterative map, we can consider the
case where the outcome only depends on the value of the system variable at a previ-
ous time,and the transition probabilities do not depend explicitly on time. Such sys-
tems are called Markov chains. The transition probabilities from a state at a particu-
lar time to the next discrete time are written:

(1.2.3)

Ps is used as the notation for the transition probability, since it is also the probability
distribution of s at time t, given a particular value s ′(t − 1) at the previous time. The
use of a time index for the arguments illustrates the use of the transition probability.
Ps (1|1) is the probability that when s = 1 at time t − 1 then s = 1 at time t. Ps (−1|1) is
the probability that when s = 1 at time t − 1 then s =−1 at time t. The transition prob-
abilities,along with the initial probability distribution of the system Ps (s′; t = 0), de-
termine the time-dependent ensemble that we are interested in. Assuming that we
don’t lose systems on the way, the transition probabilities of Eq. (1.2.3) must satisfy:

(1.2.4)

This states that no matter what the value of the system variable is at a particular time,
it must reach some value at the next time.

The stochastic system described by transition probabilities can be written as an
iterative map on the probability distribution P(s)

(1.2.5)

It may be more intuitive to write this using the notation

(1.2.6)

in which case it may be sufficient, though hazardous, to write the abbreviated form

(1.2.7)
    

P(s(t)) = P(s(t)|s(t −1))P(s(t −1))
s(t −1)

∑

    

Ps( ′ s (t);t) = Ps( ′ s (t)| ′ s (t − 1))Ps ( ′ s (t −1);t −1)
′ s (t −1)

∑

    

Ps( ′ s ;t) = Ps( ′ s | ′ ′ s )Ps( ′ ′ s ;t −1)
′ ′ s 

∑

    

Ps( ′ ′ s | ′ s )
′ ′ s 

∑ = 1

    Ps( ′ s (t)| ′ s (t −1))

    

< Q(s) >= Ps( ′ s )Q( ′ s )
′ s 

∑
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It is important to recognize that the time evolution equation for the probability
is linear. The linear evolution of this system (Eq. (1.2.5)) guarantees that superposi-
tion applies. If we start with an initial distribution at
time t = 0, then we could find the result at time t by separately looking at the evolu-
tion of each of the probabilities P 1(s ;0) and P 2(s ;0). Explicitly we can write
P(s ;t) = P1(s ;t) + P 2(s ;t). The meaning of this equation should be well noted. The
right side of the equation is the sum of the evolved probabilities P 1(s ;t) and P 2(s ;t).
This linearity is a direct consequence of the independence of different members of the
ensemble and says nothing about the complexity of the dynamics.

We note that ultimately we are interested in the behavior of a particular system
s(t) that only has one value of s at every time t. The ensemble describes how many such
systems will behave. Analytically it is easier to describe the ensemble as a whole,how-
ever, simulations may also be used to observe the behavior of a single system.

1.2.1 Random walk
Stochastic systems with only one binary variable might seem to be trivial, but we will
devote quite a bit of attention to this problem. We begin by considering the simplest
possible binary stochastic system. This is the system which corresponds to a coin toss.
Ideally, for each toss there is equal probability of heads (s = +1) or tails (s = −1), and
there is no memory from one toss to the next. The ensemble at each time is indepen-
dent of time and has an equal probability of ±1:

(1.2.8)

where the discrete delta function is defined by

(1.2.9)

Since Eq. (1.2.8) is independent of what happens at all previous times, the evolution
of the state variable is given by the same expression

(1.2.10)

We can illustrate the evaluation of the average of a function of s at time t :

(1.2.11)

For example, if we just take Q(s) to be s itself we have the average of the system
variable:

(1.2.12)
    

< s >t = 1
2

′ s 
s '=±1

∑ = 0

    

< Q(s) >t = Q( ′ s )Ps ( ′ s ;t)
′ s = ±1
∑ = Q( ′ s ) 1

2 ′ s ,1 + 1
2 ′ s ,−1( )

′ s =±1

∑ = 1
2

Q( ′ s )
′ s = ±1
∑

    
P( ′ s |s) = 1

2 ′ s ,1 + 1
2 ′ s ,−1

    
i ,j =

1 i = j

0 i ≠ j

 
 
 

 
 

    
P(s ;t) = 1

2 s,1 + 1
2 s ,−1
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Question 1.2.1 Will you win more fair coin tosses if (a) you pick heads
every time,or if (b) you alternate heads and tails, or if (c) you pick heads

or tails at random or if (d) you pick heads and tails by some other system?
Explain why.

Solution 1.2.1 In general, we cannot predict the number of coin tosses that
will be won, we can only estimate it based on the chance of winning.
Assuming a fair coin means that this is the best that can be done. Any of the
possibilities (a)–(c) give the same chance of winning. In none of these ways
of gambling does the choice you make correlate with the result of the coin
toss. The only system (d) that can help is if you have some information about
what the result of the toss will be,like betting on the known result after the
coin is tossed.A way to write this formally is to write the probability distri-
bution of the choice that you are making. This choice is also a stochastic
process. Calling the choice c(t), the four possibilities mentioned are:

(a) (1.2.13)

(b) (1.2.14)

(c) (1.2.15)

(d) (1.2.16)

It is sufficient to show that the average probability of winning is the
same in each of (a)–(c) and is just 1/2. We follow through the manipulations
in order to illustrate some concepts in the treatment of more than one sto-
chastic variable. We have to sum over the probabilities of each of the possi-
ble values of the coin toss and each of the values of the choices, adding up
the probability that they coincide at a particular time t:

(1.2.17)

This expression assumes that the values of the coin toss and the value of
the choice are independent,so that the joint probability of having a particu-
lar value of s and a particular value of c is the product of the probabilities of
each of the variables independently:

(1.2.18)

—the probabilities-of-independent-variables factor. This is valid in cases
(a)–(c) and not in case (d), where the probability of c occurring is explicitly
a function of the value of s.

We eva lu a te the prob a bi l i ty of winning in each case (a) thro u gh (c) using

    Ps ,c ( ′ s , ′ c ;t) = Ps( ′ s ;t)Pc ( ′ c ;t)

    

< c,s >= ′ c , ′ s Ps ( ′ s ;t)Pc( ′ c ,t)
′ c 

∑
′ s 

∑

    P(c;t) = c,s(t )

    
P(c;t) = 1

2 c ,1 + 1
2 c ,−1

    
P(c;t) = 1+(−1)

t

2 c ,1 + 1−(−1)
t

2 c ,−1 = mod2(t) c,1 + mod2(t +1) c ,−1

    P(c;t) = c,1
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(1.2.19)

where the last equality follows from the normalization of the probability (the
sum over all possibilities must be 1, Eq. (1.2.1)) and does not depend at all
on the distribution. This shows that the independence of the variables guar-
antees that the probability of a win is just 1/2.

For the last case (d) the trivial answer, that a win is guaranteed by this
method of gambling, can be arrived at formally by evaluating

(1.2.20)

The value of s at time t is independent of the value of c, but the value of c de-
pends on the value of s. The joint probability Ps,c(s′,c′;t) may be written as the
product of the probability of a particular value of s = s′ times the conditional
probability Pc(c′|s′;t) of a particular value of c = c′ given the assumed value
of s:

(1.2.21) ❚

The next step in our analysis of the binary stochastic system is to consider the be-
havior of the sum of s(t) over a particular number of time steps. This sum is the dif-
ference between the total number of heads and the total number of tails. It is equiva-
lent to asking how much you will win or lose if you gamble an equal amount of money
on each coin toss after a certain number of bets. This problem is known as a random
walk, and we will define it as a consideration of the state variable

(1.2.22)

The way to write the evolution of the state variable is:

(1.2.23)

Thus a ra n dom walk con s i ders a state va ri a ble d that can take integer va lues d ∈ { . . . ,
− 1 , 0 , 1 , . . . } . At every time step, d(t) can on ly move to a va lue one high er or one lower
than wh ere it is. We assume that the prob a bi l i ty of a step to the ri ght (high er) is equ a l
to that of a step to the left (lower ) . For conven i en ce , we assume (with no loss of gen er-

    
P( ′ d |d) = 1

2 ′ d ,d+1 + 1
2 ′ d ,d −1

    

d(t) = s( ′ t )
′ t =1

t

∑

    

< c,s > = ′ c , ′ s Ps ( ′ s ;t)Pc( ′ c | ′ s ;t)
′ c 

∑
′ s 

∑
= ′ c , ′ s Ps( ′ s ;t) ′ c , ′ s 

′ c 
∑

′ s 
∑ = Ps( ′ s ;t)

′ s 
∑ = 1

    
< c,s > = ′ c , ′ s Ps ,c( ′ s , ′ c ;t)

′ c 
∑

′ s 
∑

    

< c,s > = ′ c , ′ s (1
2 ′ s ,1 + 1

2 ′ s ,−1)Pc ( ′ c ;t)
′ c 

∑
′ s 

∑
= (1

2 ′ c ,1 + 1
2 ′ c ,−1)Pc( ′ c ;t)

′ c 
∑

= (1
2

Pc (1;t) + 1
2

Pc(−1;t))
′ c 

∑ = 1
2
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a l i ty) that the sys tem starts at po s i ti on d(0) = 0 . This is built into Eq .( 1 . 2 . 2 2 ) . Bec a u s e
of the sym m etry of the sys tem under a shift of the ori gi n , this is equ iva l ent to con s i d-
ering any other starting poi n t . O n ce we solve for the prob a bi l i ty distri buti on of d a t
time t, because of su perpo s i ti on we can also find the re sult of evo lving any initial prob-
a bi l i ty distri buti on P(d;t = 0 ) .

We can pictu re the ra n dom walk as that of a drunk who has difficulty con s i s-
ten t ly moving forw a rd . Our model of this walk assumes that the drunk is equ a lly
l i kely to take a step forw a rd or back w a rd . S t a rting at po s i ti on 0, he moves to ei t h er
+1 or −1 . Let’s say it was +1 . Next he moves to +2 or back to 0. Let’s say it was 0. Nex t
to +1 or −1 . Let’s say it was +1 . Next to +2 or 0. Let’s say +2 . Next to +3 or +1 . Let’s
s ay +1 . And so on .

What is the value of system variable d(t) at time t? This is equivalent to asking
how far has the walk progressed after t steps.Of course there is no way to know how
far a particular system goes without watching it. The average distance over the en-
semble of systems is the average over all possible values of s(t). This average is given
by applying Eq. (1.2.2) or Eq. (1.2.11) to all of the variables s(t):

(1.2.24)

The average is written out explicitly on the first line using Eq.(1.2.11). The second line
expression can be arrived at either directly or from the linearity of the average. The fi-
nal answer is clear, since it is equally likely for the walker to move to the right as to the
left.

We can also ask what is a typical distance traveled by a particular walker. By typ-
ical distance we mean how far from the starting point. This can either be defined by
the average absolute value of the distance, or as is more commonly accepted,the root
mean square (RMS) distance:

(1.2.25)

(1.2.26)

To evaluate the average of the product of the two steps, we treat differently the case in
which they are the same step and when they are different steps. When the two steps
are the same one we use s(t) = ±1 to obtain:

(1.2.27)

Which follows from the normalization of the probability (or is obvious). To evaluate
the average of the product of two steps at different times we need the joint probabil-
ity of s(t ) and s(t ′). This is the probability that each of them will take a particular

    < s(t)2 > = <1> =1

    

< d(t)2 > =< s( ′ t )
′ t =1

t

∑
 

 
  

 

 
  

2

> =< s( ′ t )s( ′ ′ t )
′ t , ′ ′ t =1

t

∑ > = < s( ′ t )s( ′ ′ t )
′ t , ′ ′ t =1

t

∑ >

    (t) = < d(t)2 >

      

< d(t) > = 1
2

s(t )=±1
∑ K1

2
s (3)=±1
∑ 1

2
s (2)=±1
∑ 1

2
d(t)

s(1)=±1
∑

= < s( ′ t ) >
′ t =1

t

∑ = 0
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value. Because we have assumed that the steps are independent, the joint probability is
the product of the probabilities for each one separately:

t ≠ t ′ (1.2.28)

so that for example there is 1/4 chance that s(t) = +1 and s(t) = −1. The independence
of the two steps leads the average of the product of the two steps to factor:

t ≠ t ′ (1.2.29)

This is zero, since either of the averages are zero. We have the combined result:

(1.2.30)

and finally:

(1.2.31)

This gives the classic and important re sult that a ra n dom walk travels a typical distance
that grows as the squ a re root of the nu m ber of s teps taken : .

We can now consider more completely the probability distribution of the posi-
tion of the walker at time t. The probability distribution at t = 0 may be written:

(1.2.32)

After the first time step the probability distribution changes to

(1.2.33)

this results from the definition d(1) = s (1). After the second step d(2) = s(1) + s(2) it
is:

(1.2.34)

More generally it is not difficult to see that the probabilities are given by normalized
binomial coefficients,since the number of ones chosen out of t steps is equivalent to
the number of powers of x in (1 + x)t. To reach a position d after t steps we must take
(t + d)/2 steps to the right and (t − d)/2 steps to the left. The sum of these is the num-
ber of steps t and their difference is d. Since each choice has 1/2 probability we have:

    
P(d ;2) = 1

4 d ,2 + 1
2 d ,0 + 1

4 d ,−2

    
P(d ;1) = 1

2 d ,1 + 1
2 d ,−1

    P(d ;0) = d,0

    

< d(t)2 > = < s( ′ t )s( ′ ′ t ) >
′ t , ′ ′ t =1

t

∑ = ′ t , ′ ′ t 
′ t , ′ ′ t =1

t

∑ = 1
′ t =1

t

∑ = t

    < s(t)s( ′ t ) > = t , ′ t 

    

< s(t)s( ′ t ) > = P(s(t),s( ′ t ))s(t)s( ′ t )
s (t ), s( ′ t )
∑

= P(s(t))P(s( ′ t ))s(t)s( ′ t )
s (t ),s( ′ t )

∑
= < s(t) > < s( ′ t ) > =0

    P(s(t),s( ′ t )) = P(s(t))P(s( ′ t ))
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(1.2.35)

where the unusual delta function imposes the condition that d takes only odd or only
even values depending on whether t is odd or even.

Let us now consider what happens after a long time.The probability distribution
spreads out,and a single step is a small distance compared to the typical distance trav-
eled. We can consider s and t to be continuous variables where both conditions
d,t >> 1 are satisfied. Moreover, we can also consider d<< t, because the chance that
all steps will be taken in one direction becomes very small. This enables us to use
Sterling’s approximation to the factorial

(1.2.36)

For large t it also makes sense not to restrict d to be either odd or even. In order to al-
low both, we,in effect, interpolate and then take only half of the probability we have
in Eq. (1.2.35). This leads to the expression:

(1.2.37)

where we have defined x = d / t. To approximate this expression it is easier to consider
it in logarithmic form:

or exponentiating:

(1.2.39)

    

P(d ,t) =
1

2 t
e −d

2
/ 2t =

1

2
e −d

2
/ 2

2

      

ln(P(d,t))= −(t /2)[(1+ x)ln(1 + x) +(1− x)ln(1 − x)]−(1/2)ln(2 t(1− x2))

≈ −(t /2)[(1 + x)(x − x 2 /2+K) +(1− x)(−x − x 2 /2+K)]− (1/2)ln(2 t + K)

= −tx 2 /2− ln( 2 t )

    

P(d ,t) = t

2 (t −d)(t +d)2t

t te −t

[(d + t)/2][(d+t )/2][(t − d)/2][(t −d)/ 2]e −(d+t )/2−(t −d)/2

= (2 t(1− x2))−1/ 2

(1+ x)[(1+x )t / 2](1− x)[(1−x )t / 2]

    

x!~ 2 x e −xx x

ln(x!)~ x(lnx −1) + ln( 2 x )

    

P(d ,t) = 1

2t

t

(d + t)/2

 
 
  

 
 t ,d

oddeven = 1

2t

t !

[(d + t )/2]![(t − d)/2]!
t ,d
oddeven

t ,d
oddeven =

(1+(−1)t +d )

2
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The prefactor of the exponential, 1/√2 , originates from the factor √2 x in
Eq. (1.2.36). It is independent of d and takes care of the normalization of the proba-
bility. The result is a Gaussian distribution. Questions 1.2.2–1.2.5 investigate higher-
order corrections to the Gaussian distribution.

Question 1.2.2 In order to obtain a correction to the Gaussian distribu-
tion we must add a correction term to Sterling’s approximation:

(1.2.40)

Using this expression, find the first correction term to Eq. (1.2.37).

Solution 1.2.2 The correction term in Sterling’s approximation contributes
a factor to Eq. (1.2.37) which is (for convenience we write here c = 1/12):

(1.2.41)

where we have only kept the largest correction term,neglecting d compared
to t. Note that the correction term vanishes as t becomes large. ❚

Question 1.2.3 Keeping additional terms of the expansion in Eq.(1.2.38),
and the result of Question 1.2.2,find the first order correction terms to

the Gaussian distribution.

Solution 1.2.3 Correction terms in Eq. (1.2.38) arise from several places.
We want to keep all terms that are of order 1/t. To do this we must keep in
mind that a typical distance traveled is d ∼ √t, so that . The next
terms are obtained from:

This gives us a distribution:
      

ln(P(d,t))= −(t /2)[(1+ x)ln(1 + x) +(1− x)ln(1 − x)]

− (1/2)ln(2 t(1− x2 ))+ ln(1− 1/4t)

≈ −(t /2)[(1+ x)(x − 1
2

x 2 + 1
3

x3 − 1
4

x4 K)

+ (1− x)(−x − 1
2

x2 − 1
3

x 3 − 1
4

x 4 K)]

− ln( 2 t ) −(1/2)ln(1− x 2) + ln(1− 1/4t)

≈ −(t /2)[(x + x 2 − 1
2

x 2 − 1
2

x 3 + 1
3

x3 + 1
3

x 4 − 1
4

x 4K)

+ (−x + x 2 − 1
2

x 2 + 1
2

x 3 − 1
3

x3 + 1
3

x 4 − 1
4

x4 K)]

− ln( 2 t ) +(x 2 /2 +…)+ (−1/4t + …)

= −tx 2 /2− ln( 2 t ) −tx 4 /12 + x 2 /2 − 1/4t

    

(1+ c /t)

(1+ 2c /(t + d))(1+ 2c /(t − d))
= (1−

3c

t
+ …) =(1−

1

4t
+…)

    

x!~ 2 x e − xx x(1+ 1

12x
+…)

ln(x!)~ x(lnx −1) + ln( 2 x ) + ln(1+ 1

12x
+…)
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(1.2.43) ❚

Question 1.2.4 What is the size of the additional factor? Estimate the
size of this term as t becomes large.

Solution 1.2.4 The typical value of the variable d is its root mean square
value = √t . At this value the additional term gives a factor

(1.2.44)

which approaches 1 as time increases. ❚

Question 1.2.5 What is the fraction error that we will make if we neglect
this term after one hundred steps? After ten thousand steps?

Solution 1.2.5 After one hundred time steps the walker has traveled a typ-
ical distance of ten steps. We generally approximate the probability of arriv-
ing at this distance using Eq.(1.2.39). The fractional error in the probability
of arriving at this distance according to Eq. (1.2.44) is 1 − e1/6t ≈ −1 / 6t =
−0.00167. So already at a distance of ten steps the error is less than 0.2%.

It is mu ch less likely for the walker to arrive at the distance 2 = 2 0 . Th e
ra tio of the prob a bi l i ty to arrive at 20 com p a red to 10 is e−2 / e−0 . 5 ∼ 0 . 2 2 . If
we want to know the error of this small er prob a bi l i ty case we would wri te
(1 − e−1 6 / 1 2t +4 / 2t−1 / 4t) = (1 − e5 / 1 2t) ≈ −0 . 0 0 4 2 , wh i ch is a larger but sti ll small
error.

After ten thousand steps the errors are smaller than the errors at one
hundred steps by a factor of one hundred. ❚

1.2.2 Generalized random walk and the central limit theorem
We can generalize the random walk by allowing a variety of steps from the current lo-
cation of the walker to sites nearby, not only to the adjacent sites and not only to in-
teger locations. If we restrict ourselves to steps that on average are balanced left and
right and are not too long ranged, we can show that all such systems have the same
behavior as the simplest random walk at long enough times (and characteristically
not even for very long times). This is the content of the central limit theorem. It says
that summing any set of independent random variables eventually leads to a Gaussian
distribution of probabilities, which is the same distribution as the one we arrived at
for the random walk.The reason that the same distribution arises is that successive it-
eration of the probability update equation, Eq.(1.2.7),smoothes out the distribution,
and the only relevant information that survives is the width of the distribution which
is given by (t). The proof given below makes use of a Fourier transform and can be
skipped by readers who are not well acquainted with transforms. In the next section
we will also include a bias in the random walk. For long times this can be described as

    e
1/ 6t

    
P(d ,t) =

1

2 t
e −d

2
/ 2te −d

4
/ 12t

3 +d
2

/ 2t
2 −1/ 4t
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an average motion superimposed on the unbiased random walk.We start with the un-
biased random walk.

Each step of the random walk is described by the state variable s(t) at time t. The
probability of a particular step size is an unspecified function that is independent of
time:

(1.2.45)

We treat the case of integer values of s. The continuum case is Question 1.2.6. The ab-
sence of bias in the random walk is described by setting the average displacement in
a single step to zero:

(1.2.46)

The statement above that each step is not too long ranged,is mathematically just that
the mean square displacement in a single step has a well-defined value (i.e., is not
infinite):

(1.2.47)

Eqs. (1.2.45)–(1.2.47) hold at all times.
We can still evaluate the average of d(t) and the RMS value of d(t) directly using

the linearity of the average:

(1.2.48)

(1.2.49)

Since s(t ′) and s(t″) are independent for t ′ ≠ t ′′, as in Eq. (1.2.29), the average
factors:

t ′ ≠ t ′′ (1.2.50)

Thus, all terms t ′ ≠ t ′′ are zero by Eq. (1.2.46). We have:

(1.2.51)

This means that the typical value of d(t) is 0√t .
To obtain the full distribution of the random walk state variable d(t) we have to

sum the stochastic variables s(t). Since d(t) = d(t − 1) + s(t) the probability of transi-
tion from d(t − 1) to d(t) is f (d(t) − d(t − 1)) or:

    
< d(t)2 > = < s( ′ t )2 >

′ t =1

t

∑ = t 0
2

    < s( ′ t )s( ′ ′ t ) > = <s( ′ t ) >< s( ′ ′ t ) > = 0

    

< d(t)2 > =< s( ′ t )
′ t =1

t

∑
 

 
  

 

 
  

2

> = < s( ′ t )s( ′ ′ t ) >
′ t , ′ ′ t =1

t

∑

    

< d(t) > = < s( ′ t )
′ t =1

t

∑ > =t < s > = 0

    
< s2 > = s2 f (s) = 0

2

s
∑

    

< s > = sf (s) = 0
s

∑

    P(s ;t) = f (s)
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(1.2.52)

We can now write the time evolution equation and iterate it t times to get P (d ;t).

(1.2.53)

This is a convolution, so the most convenient way to effect a t fold iteration is in
Fourier space. The Fourier representation of the probability and transition functions
for integral d is:

(1.2.54)

We use a Fourier series because of the restriction to integer values of d. Once we solve
the problem using the Fourier representation, the probability distribution is recov-
ered from the inverse formula:

(1.2.55)

which is proved

(1.2.56)

using the expression:

(1.2.57)

Applying Eq. (1.2.54) to Eq. (1.2.53):

(1.2.58)

    

˜ P (k;t) = e −ikd

d
∑ f (d − ′ d )P( ′ d ;t − 1)

′ d 
∑

=
′ d 

∑ e −ik(d− ′ d )e −ik ′ d f (d − ′ d )P( ′ d ;t −1)
d

∑
=

′ d 

∑ e −ik ′ ′ d e −ik ′ d f ( ′ ′ d )P( ′ d ;t −1)
′ ′ d 

∑
= e −ik ′ ′ d f ( ′ ′ d )

′ ′ d 

∑ e −ik ′ d P( ′ d ;t −1)
′ d 

∑ = ˜ f (k) ˜ P (k;t − 1)

    
d , ′ d =

1

2
dke ik(d− ′ d )

−
∫

    

1

2
dke ikd ˜ P (k;t)

−
∫ = 1

2
dke ikd e −ik ′ d P( ′ d ;t)

′ d 
∑

−
∫

=
1

2
P( ′ d ;t) dke ik(d− ′ d )

−
∫

′ d 

∑ = P( ′ d ;t) d , ′ d 

′ d 

∑ = P(d ;t)

    

P(d ;t) =
1

2
dke ikd ˜ P (k ;t)

−
∫

    

˜ P (k;t) ≡ e −ikd P(d;t)
d

∑
˜ f (k) ≡ e −iks f (s)

s
∑

    
P(d;t) = P(d | ′ d )P( ′ d ;t − 1)

d'

∑ = f (d − ′ d )P( ′ d ;t − 1)
d '

∑

    P( ′ d |d) = f ( ′ d −d)

S t o c ha s t ic  i t e ra t i v e  m aps 49

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 49
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:16 AM  Page 49



we can iterate the equation to obtain:

(1.2.59)

where we use the definition d(1) = s(1) that ensures that P(d ;1) = P(s;1) = f (d).
For large t the walker has traveled a large distance,so we are interested in varia-

tions of the probability P(d ;t) over large distances.Thus,in Fourier space we are con-
cerned with small values of k. To simplify Eq.(1.2.59) for large t we expand f̃(k) near
k = 0. From Eq.(1.2.54) we can directly evaluate the derivatives of f̃ (k) at k = 0 in terms
of averages:

(1.2.60)

We can use this expression to evaluate the terms of a Taylor expansion of f̃ (k):

(1.2.61)

(1.2.62)

Using the normalization of the probability (< 1 > = 1),and Eqs.(1.2.46) and (1.2.47),
gives us:

(1.2.63)

We must now rem em ber that a typical va lue of d(t) ,f rom its RMS va lu e , is 0√t . By the
properties of the Fourier transform,this implies that a typical value of k that we must
consider in Eq.(1.2.63) varies with time as 1/√t . The next term in the expansion,cu-
bic in k, would give rise to a term that is smaller by this factor, and therefore becomes
unimportant at long times. If we write k = q /√t , then it becomes clearer how to write
Eq. (1.2.63) using a limiting expression for large t :

(1.2.64)

This Gaussian, when Fourier transformed back to an expression in d, gives us a
Gaussian as follows:

(1.2.65)

    

P(d ;t) =
1

2
dke ikde −t 0

2
k

2
/ 2

−
∫ ≅

1

2
dke ikde −t 0

2
k

2
/2

−∞

∞

∫

      

˜ P (k;t) = 1− 1
2

0
2q2

t
+K

 

 
 

 

 
 

t

~e − 0
2
q

2
/2 = e −t 0

2
k

2
/ 2

      
˜ P (k;t) = 1− 1

2 0
2k 2 +K( )t

      
˜ f (k) =<1> −i < s >k −

1

2
< s2 > k 2 +K

      

˜ f (k) = ˜ f (0) +
˜ f (k)

k
k =0

k +
1

2

2 ˜ f (k)

k 2
k =0

k 2 +K

    

dn ˜ f (k)

dnk
k =0

= (−is)n f (s)
s

∑ = (−i)n < sn >

    
˜ P (k;t) = ˜ f (k) ˜ P (k ;t −1) = ˜ f (k)t
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We have extended the integral because the decaying exponential becomes narrow as t
increases. The integral is performed by completing the square in the exponent, giving:

(1.2.66)

or equivalently:

(1.2.67)

which is the same as Eq. (1.2.39).

Question 1.2.6 Prove the central limit theorem when s takes a contin-
uum of values.

Solution 1.2.6 The proof follows the same course as the integer valued
case. We must define the appropriate averages,and the transform. The aver-
age of s is still zero, and the mean square displacement is defined similarly:

(1.2.46´)

(1.2.47´)

To avoid problems of notation we substitute the variable x for the state vari-
able d:

(1.2.48´)

Skipping steps that are the same we find:

(1.2.51´)

since s(t ′) and s(t ′′) are still independent for t ′ ≠ t ′′. Eq. (1.2.53) is also es-
sentially unchanged:

(1.2.53´)

The transform and inverse transform must now be defined using

(1.2.54´)

    

˜ P (k;t) ≡ dx∫ e −ikxP(x ;t)

˜ f (k) ≡ ds∫ e −iks f (s)

    
P(x;t) = d ′ x f (x − ′ x )P( ′ x ;t −1)∫

    
< x(t)2 > = < s( ′ t )

′ t =1

t

∑ 

 
 

 

 
 

2

> = < s( ′ t )2 >
′ t =1

t

∑ = t 0
2

    

< x(t) > = < s( ′ t )
′ t =1

t

∑ > = t < s > = 0

    
< s2 > = ds∫ s2f (s) = 0

2

    
< s > = ds∫ sf (s) = 0

    

P(d ;t) =
1

2 (t)2
e −d

2
/ 2 (t )

2

    

=
1

2
dke −d

2
/ 2t 0

2

e −(t 0
2
k

2 −2ikd−d
2

/t 0
2

)/2

−∞

∞

∫ =
1

2 t 0
2

e −d
2

/ 2t 0
2
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(1.2.55´)

The latter is proved using the properties of the Dirac (continuum) delta
function:

(1.2.56´)

where the latter equation holds for an arbitrary function g(x).
The remainder of the derivation carries forward unchanged. ❚

1.2.3 Biased random walk
We now return to the simple random walk with binary steps of ±1. The model we con-
sider is a random walk that is biased in one direction.Each time a step is taken there
is a probability P+ for a step of +1, that is different from the probability P– for a step
of –1, or:

(1.2.68)

(1.2.69)

where

(1.2.70)

What is the average distance traveled in time t?

(1.2.71)

This equation justifies defining the mean velocity as

(1.2.72)

Since we already have an average displacement it doesn’t make sense to also ask
for a typical displacement,as we did with the random walk—the typical displacement
is the average one.However, we can ask about the spread of the displacements around
the average displacement

(1.2.73)

This is called the standard deviation and it reduces to the RMS distance in the unbi-
ased case. For many purposes (t) plays the same role in the biased random walk as
in the unbiased random walk. From Eq. (1.2.71) and Eq. (1.2.72) the second term is
(vt)2. The first term is:

    

(t)2 = <(d(t)− <d(t) >)2 > = <d(t)2 > −2 < d(t) >2 + <d(t) >2

= < d(t)2 > − < d(t) >2

    v = P+ − P−

    

< d(t) > = < s( ′ t ) >
′ t =1

t

∑ = (P+ − P− )
′ t =1

t

∑ = t(P+ − P− )

    P+ + P– = 1

    P( ′ d |d) = P+ ′ d ,d +1 + P− ′ d ,d−

    P(s ;t) = P+ s ,1 + P− s ,−1

    

(x − ′ x ) = 1

2
dke ik(x− ′ x )∫

d ′ x (x − ′ x )∫ g( ′ x ) = g(x)

    
P(d ;t) =

1

2
dke ikd ˜ P (k ;t)∫
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(1.2.74)

Substituting in Eq. (1.2.73):

(1.2.75)

It is interesting to consider this expression in the two limits v = 1 and v = 0. For v = 1
the walk is deterministic, P+ = 1 and P− = 0, and there is no element of chance; the
walker always walks to the right.This is equivalent to the iterative map Eq.(1.1.4).Our
result Eq.(1.2.66) is that = 0, as it must be for a deterministic system. However, for
smaller velocities,the spreading of the systems increases until at v = 0 we recover the
case of the unbiased random walk.

The complete probability distribution is given by:

(1.2.76)

For large t the distribution can be found as we did for the unbiased random walk. The
work is left to Question 1.2.7.

Question 1.2.7 Find the long time (continuum) distribution for the bi-
ased random walk.

Solution 1.2.7 We use the Sterling approx i m a ti on as before and take the log-
a rithm of the prob a bi l i ty. In ad d i ti on to the ex pre s s i on from the first line of
Eq . (1.2.38) we have an ad d i ti onal factor due to the coef f i c i ent of Eq .( 1 . 2 . 7 6 )
wh i ch appe a rs in place of the factor of 1 / 2t. We again define x = d/t, and di-
vi de by 2 to all ow both odd and even integers . We obtain the ex pre s s i on :

(1.2.77)

It makes the most sense to expand this around the mean of x, <x> = v. To
simplify the notation we can use Eq. (1.2.70) and Eq. (1.2.72) to write:

(1.2.78)

With these substitutions we have:

(1.2.79)

      

ln(P(d,t))= (t /2)[(1+ x)ln(1+ v) +(1− x)ln(1− v)]

−(t /2)[(1+ x)ln(1+ x)+ (1− x)ln(1− x)]−(1/2)ln(2 t(1− x 2))

      

P+ = (1 + v)/2

P− = (1− v)/2

    

ln(P(d,t))= (t /2)[(1+ x)ln2P+ +(1− x )ln2P− ]

−(t /2)[(1+ x)ln(1 + x)+ (1− x)ln(1 − x)]−(1/2)ln(2 t(1− x 2))

    

P(d ;t) = P+
(d +t )/ 2

P−
(d−t)/ 2 t

(d + t)/2

 

 
 

 

 
 t ,d

oddeven

      
2 = t(1 − v

2 )

      

< d(t)2 > =< s( ′ t )
′ t =1

t

∑
 

 
  

 

 
  

2

> = < s( ′ t )s( ′ ′ t ) >
′ t , ′ ′ t =1

t

∑

= ′ t , ′ ′ t +(1− ′ t , ′ ′ t )(P+
2

+ P−
2

− 2P+ P− )
 
 
 

 
 
 

′ t , ′ ′ t =1

t

∑
= t + t(t −1)v2 = t 2

v
2 +t(1− v

2)
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We expand the first two terms in a Taylor expansion around the mean of x
and expand the third term inside the logarithm. The first term of Eq.(1.2.79)
has only a constant and linear term in a Taylor expansion. These cancel the
constant and the first derivative of the Taylor expansion of the second term
of Eq. (1.2.79) at x = v. Higher derivatives arise only from the second term:

In the last line we have restored d and used Eq.(1.2.75). Keeping only the first
terms in both expansions gives us:

(1.2.81)

which is a Gaussian distribution around the mean we obtained before. This
implies that aside from the constant velocity, and a slightly modified stan-
dard deviation, the distribution remains unchanged.

The second term in both expansions in Eq.(1.2.80) become small in the
limit of large t, as long as we are not interested in the tail of the distribution.
Values of (d − vt) relevant to the main part of the distribution are given by
the standard deviation, (t). The second terms in Eq. (1.2.80) are thus re-
duced by a factor of (t) compared to the first terms in the series. Since (t)
grows as the square root of the time, they become insignificant for long
times. The convergence is slower, however, than in the unbiased random
walk (Questions 1.2.2–1.2.5). ❚

Question 1.2.8 You are a manager of a casino and are told by the owner
that you have a cash flow problem. In order to survive, you have to make

sure that nine out of ten working days you have a profit. Assume that the only
game in your casino is a roulette wheel. Bets are limited to only red or black
with a 2:1 payoff. The roulette wheel has an equal number of red numbers
and black numbers and one green number (the house always wins on green).
Assume that people make a fixed number of 106 total $1 bets on the roulette
wheel in each day.

a. What is the maximum number of red numbers on the roulette wheel
that will still allow you to achieve your objective?

b. With this number of red numbers, how much money do you make on
average in each day?

      

P(d ;t) =
1

2 (t)2
e −(d−vt)

2
2 (t )

2

        

ln(P(d,t))= −(t /2)[
1

(1− v
2)

(x −v)2 +
2

3(1− v
2)2

(x − v)3 +K]

− (1/2)ln(2 t[(1− v
2) −2v(x − v) +K])

= −[
(d − vt)2

2 (t)2
+

(d − vt)3

3 (t )4
+K]−(1/2)ln(2 ( (t)2 − 2v(d − vt) +K))
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Solution 1.2.8 The casino wins $1 for every wrong bet and loses $1 for
every right bet. The results of bets at the casino are equivalent to a random
walk with a bias given by:

(1.2.82)

(1.2.83)

where,as the manager, we consider positive the wins of the casino. The color
subscripts can be used interchangeably, since the number of red and black is
equal. The velocity of the random walk is given by:

(1.2.84)

To calculate the probability that the casino will lose on a particular day we
must sum the probability that the random walk after 106 steps will result in
a negative number. We approximate the sum by an integral over the distrib-
ution of Eq. (1.2.81). To avoid problems of notation we replace d with y:

(1.2.85)

(1.2.86)

We have written the probability of loss in a day in terms of the error func-
tion erf(x)—the integral of a Gaussian defined by

(1.2.87)

Since

(1.2.88)

we have the expression

(1.2.89)

which is also known as the complementary error function erfc(x).
    

(1 − erf(z 0)) ≡
2

dz
z 0

∞

∫ e −z
2

  erf(∞) = 1

    

erf(z 0) ≡
2

dz
0

z0

∫ e −z
2

      

z = ′ y 2 (t)

z 0 = −vt / 2 (t)2 = −vt / 2t(1− v
2)

      

Ploss = dyP(y ;t = 106)

−∞

0

∫ = 1

2 (t )2
dy

−∞

0

∫ e −(y −vt )
2

2 (t )
2

=
1

2 (t)2
d ′ y 

−∞

−vt

∫ e −( ′ y )
2

2 (t )
2

= 1
dz

−∞

z 0

∫ e −z
2

= 1

2
(1 − erf(z 0))

      v = 1/(2Nred + 1)

    P− = Nblack /(N red + Nblack +1)

    P+ = (N red +1)/(Nred + Nblack +1)
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To obtain the desired constraint on the number of red numbers, or
equivalently on the velocity, we invert Eq. (1.2.85) to find a value of v that
gives the desired Ploss = 0.1, or erf(z0) = 0.8. Looking up the error function or
using iterative guessing on an appropriate computer gives z0 = 0.9062.
Inverting Eq. (1.2.86) gives:

(1.2.90)

The approximation holds because t is large.The numerical result is v= 0.0013.
This g ives us the desired number of each color (inverting Eq. (1.2.84)) of
Nred = 371. Of course the result is a very large number and the problem of
winning nine out of ten days is a very conservative problem for a casino. Even
if we insist on winning ninety-nine out of one hundred days we would have
erf(z0) = 0.98, z0 = 1.645, v = 0.0018 and Nred = 275. The profits per day in
each case are given by vt, which is approximately $1,300 and $1,800 respec-
tively. Of course this is much less than for bets on a more realistic roulette
wheel. Eventually as we reduce the chance of the casino losing and z0 becomes
larger, we might become concerned that we are describing the properties of
the tail of the distribution when we calculate the fraction of days the casino
might lose,and Eq.(1.2.85) will not be very accurate. However, it is not dif-
ficult to see that casinos do not have cash flow problems. ❚

In order to generalize the proof of the central limit theorem to the case of a bi-
ased random walk, we can treat the continuum case most simply by considering the
system variable x̂, where (using d → x for the continuum case):

(1.2.91)

O n ly x is a stoch a s tic va ri a ble on the ri ght side , v and t a re nu m bers . Si n ce itera ti ons of
this va ri a ble would satisfy the con d i ti ons for the gen era l i zed ra n dom walk, the gen er-
a l i z a ti on of the Gaussian distri buti on to Eq .(1.2.81) is proved . The discrete case is more
difficult to prove because we cannot shift the va ri a ble d by arbi tra ry amounts and con-
ti nue to con s i der it as discrete . We can argue the discrete case to be valid on the basis
of the re sult for the con ti nuum case, but a sep a ra te proof can be con s tru cted as well .

1.2.4 Master equation approach
The Master equation is an alternative approach to stochastic systems,an alternative to
Eq. (1.2.5), that is usually applied when time is continuous. We develop it starting
from the discrete time case. We can rewrite Eq. (1.2.5) in the form of a difference
equation for a particular probability P(s). Beginning from:

(1.2.92)

    

P(s ;t) = P(s ;t −1) + P(s | ′ s )P( ′ s ;t −1)
′ s 

∑ − P(s ;t −1)
 

 
  

 

 
  

      ̂ x = x − < x > t = x −t < s > = x − vt

      

v =
1

t /2z 0 −1
≈ 2z 0 /t
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we extract the term where the system remains in the same state:

(1.2.93)

We use the normalization of probability to write it in terms of the transitions away
from this site:

(1.2.94)

Canceling the terms in the bracket that refer only to the probability P(s;t − 1) we write
this as a difference equation. On the right appear only the probabilities at different
values of the state variable (s′ ≠ s):

(1.2.95)

To write the continuum form we reintroduce the time difference between steps ∆t.

(1.2.96)

When the limit of ∆t → 0 is meaningful, it is possible to make the change to the
equation

(1.2.97)

Where the ratio P(s | s′)/∆t has been replaced by the rate of transition R(s | s′).
Eq.(1.2.97) is called the Master equation and we can consider Eq.(1.2.95) as the dis-
crete time analog.

The Master equation has a simple interpretation: The rate of change of the prob-
ability of a particular state is the total rate at which probability is being added into that
state from all other states,minus the total rate at which probability is leaving the state.
Probability is acting like a fluid that is flowing to or from a particular state and is be-
ing conserved,as it must be. Eq.(1.2.97) is very much like the continuity equation of
fluid flow, where the density of the fluid at a particular place changes according to how
much is flowing to that location or from it.We will construct and use the Master equa-
tion approach to discuss the problem of relaxation in activated processes in
Section 1.4.

    

˙ P (s ,t) = R(s | ′ s )P( ′ s ;t) − R( ′ s |s)P(s ;t)( )
′ s ≠s

∑

    

P(s ,t) − P(s ;t − ∆t)

∆t
=

P(s | ′ s )

∆t
P( ′ s ;t − ∆t) −

P( ′ s |s)

∆t
P(s ;t − ∆t)

 
 
  

 
 

′ s ≠s
∑

    

P(s ,t) − P(s ;t −1) = P(s | ′ s )P( ′ s ;t −1) − P( ′ s | s)P(s ;t −1)( )
′ s ≠s

∑

    

P(s ;t) = P(s ;t −1) + P(s | ′ s )P( ′ s ;t − 1)
′ s ≠s

∑ + 1 − P( ′ s | s)
′ s ≠s

∑
 

 
  

 

 
  P(s ;t −1) − P(s ;t −1)

 

 
  

 

 
  

    

P(s ;t) = P(s ;t −1) + P(s | ′ s )P( ′ s ;t − 1)
′ s ≠s

∑ + P(s |s)P(s;t −1) − P(s ;t −1)
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