
E

A
G

a

K
C
S
I
U
T
I

1

w
d
t
o
i
n
(
m
t
t
m
2

i
a
b
t
e
m
s
b
i

h
0

Social Networks 39 (2014) 1–11

Contents lists available at ScienceDirect

Social  Networks

jo ur nal homepage: www.elsev ier .com/ locate /socnet

fficiency  of  human  activity  on  information  spreading  on  Twitter

.J.  Morales,  J. Borondo,  J.C.  Losada,  R.M.  Benito ∗

rupo de Sistemas Complejos, Departamento de Física y Mecánica, Universidad Politécnica de Madrid, ETSI Agrónomos, 28040 Madrid, Spain

 r  t  i  c  l  e  i  n  f  o

eywords:
omplex networks
ocial networks analysis
nformation spreading
ser behavior
witter
nfluence

a  b  s  t  r  a  c  t

Understanding  the  collective  reaction  to individual  actions  is  key  to effectively  spread  information  in
social media.  In  this  work  we define  efficiency  on  Twitter,  as  the  ratio  between  the  emergent  spreading
process  and  the  activity  employed  by the user.  We  characterize  this  property  by means  of  a  quantitative
analysis  of  the  structural  and  dynamical  patterns  emergent  from  human  interactions,  and  show  it to
be  universal  across  several  Twitter  conversations.  We  found  that  some  influential  users  efficiently  cause
remarkable  collective  reactions  by each  message  sent,  while  the  majority  of  users  must  employ  extremely

larger  efforts  to reach  similar  effects.  Next  we  propose  a model  that reproduces  the retweet  cascades
occurring  on  Twitter  to explain  the  emergent  distribution  of  the  user  efficiency.  The model  shows  that
the  dynamical  patterns  of the  conversations  are  strongly  conditioned  by the  topology  of  the  underlying
network.  We  conclude  that  the  appearance  of  a  small  fraction  of extremely  efficient  users results  from
the heterogeneity  of  the  followers  network  and  independently  of  the  individual  user behavior.
. Introduction

In the recent years, our society has experienced the rise of new
ays to communicate and relate among each other through digital
evices. The increasingly affordability of technology, together with
he solutions brought, have turn mobile and Internet devices as one
f the fastest growing markets worldwide (Infiniti, 2013). Specially
n third world countries where the expanding projections of tech-
ological solutions double those found in the industrialized world
Cisco, 2013). Such technological revolution has given as a result, a

assive amount of data provided by humans, as they interact with
heir digital devices on daily basis. The nowadays challenge is to
urn these unstructured data into valuable information for policy

akers to take better and more intelligent decisions (Lazer et al.,
009).

At the moment, traditional surveys have given important
nsights to our societal understanding. However, their cost in time
nd human efforts, makes it impossible for them to scale up and
ring information of the structure of the social system behind
heir observation. Traditionally, the discovery of structural prop-
rties of social networks have been limited to the necessity of
apping a large amount of interactions between people. In this
ense, online social networks, such as Twitter or Facebook, have
ecome an ideal source of information to collect human-to-human

nteractions and unveil the social structures that people constitute,
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which opens an opportunity for researchers to characterize and
model human behavior (Lewis and Christakis, 2008; Takhteyev
et al., 2012). These web  applications are used on daily basis by peo-
ple to post opinions, propagate news and exchange information.
As a result, several commercial, political and social organizations
are increasingly exploiting these communication tools to advertise
products, organize campaigns and disseminate updates on their
respective fields.

Twitter, with over 200 million users, is the ideal tool to quickly
propagate short text messages. It is an open debate that the data
taken from Twitter are not necessarily representative samples of
the outside world, as they are constrained to the population that
participates in the online conversations (Mislove et al., 2011; Gayo-
Avello, 2012). However, a social contextualization of the data,
combined with a suitable computational and mathematical treat-
ment, may  provide important insights into how people behave. In
fact, the activity performed by users on Twitter has brought infor-
mation enough to understand a wide variety of phenomena, like the
prediction of stock market variations (Bollen et al., 2011), the man-
agement of natural disasters (Sakaki et al., 2010), the understanding
of epidemical diseases (Culotta, 2010) and the characterization
of electoral processes (Borondo et al., 2012; Livne et al., 2011).
The deeply understanding of these social processes is crucial to
design better strategies and get optimal outcomes from the net-
work potential.
Recent studies have revealed that most of the information
posted on Twitter is hardly propagated through the network, as
71% of the messages do not travel any farther than the authors time-
line (Cheng and Evans, 2009). Among other factors, this spreading

dx.doi.org/10.1016/j.socnet.2014.03.007
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Table 1
Properties of the studied datasets and their resulting user efficiency distribution
properties.

Keyword Messages Users �� ��

Andreafabra 35, 835 23, 498 0.15 1.05
Gingrich 93, 063 43, 061 −0.08 1.13
Leones 142, 808 46, 608 −0.08 1.09
20N  389, 988 123, 710 −0.49 1.08
SOSInternetVE 421, 602 77, 706 −0.79 1.21

we found that some influential users acted as information pro-
ducers, providing messages that are received by the passive large
 A.J. Morales et al. / Soc

nertia has been attributed to the fact that the novelty of the posted
nformation decays quite rapidly, which stretches the effective time
o attract the collective attention (Asur et al., 2011), in addition
o the fact that most of the people on Twitter behave passively
Romero et al., 2011). However, in this context, there are people
ho do influence the rest of users and are able to get their messages

pread through the network, in a wide variety of proportions.
The keys to success when propagating information on Twitter

ave been reported to be a combination of several factors, such
s the popularity of the source, the posting frequency, as well as
he novelty and resonance of the message content (Romero et al.,
011). In fact, the largest retweets cascades on Twitter, were found
o be seeded by previously popular users, whose messages con-
ained positive feelings (Bakshy et al., 2011). However, the efforts
f each user to gain influence and get their information spread on
he network is a subject that has not yet been explained. In the sense
hat although users may  gain enough influence to transfer informa-
ion on the network, this influence is not necessarily achieved with
he same efficiency, in terms of the amount of efforts that had to
e employed for this matter.

In this work we address the question of which factors, like the
ndividual behavior or the underlying substratum, determine the
sers efficiency to have their messages spread through the network.
ore specifically, we propose a measure to characterize the user

fficiency to influence the emergence and growth of retweets cas-
ades, by means of the relationship between the activity employed
y the users and the emergent collective response to such activity,
easured in terms of the number of retransmissions gained. On

his basis, we propose a model to understand the emergence of the
ser efficiency distribution, based on independent cascades taking
lace on networks (Goldenberg et al., 2001), biasing the probabil-

ty of retransmission among nodes, in order to decay as we move
arther from the message source, as we see in the empirical data.

The results indicate that some regular users may  gain a sim-
lar amount of retransmissions as the popular ones, but far less
fficiently, as they must employ a much larger amount of activ-
ty. Furthermore, we have seen that the emergent distribution of
sers according to their efficiency, is strongly conditioned to the
nderlying network where information is being propagated. As a
atter of fact, it actually represents a reflection of the dynamical

ules behind the spreading process.
The paper is organized as follows. First, we introduce the sys-

em of our study in Section 2, as well as the datasets that we have
uilt and analyzed. Then in Sections 3–5 we focus on the empiri-
al measurements that lead us to state the dynamical rules of the
ropagation process. After this, in Section 6 we propose a simple
odel to verify the dynamical processes reported. Finally, we  dis-

uss the effects of the underlying topology and initial user activity
ehavior in the emergent dynamical patterns, which we  found to
e universal on Twitter conversations.

. System

The system under study is based on human activity taking place
round specific topics of conversation on Twitter. In this section
e give some background on the user interaction mechanisms pro-

ided by Twitter, as well as describe the datasets that we have built
nd analyzed.

.1. Twitter background
Twitter is a microblogging service where people are able to post
nd exchange text messages limited by 140 characters either from
ersonal computers or mobile devices. There are several mecha-
isms for users to interact on Twitter. The first of these is the ability
Obama 6, 818, 782 2, 265, 799 0.14 1.15
Egypt 7, 433, 542 1, 180, 715 −0.80 1.33

to follow and be followed by other persons. This is a passive mech-
anism that allows users to receive all the messages posted by those
who follow, as well as to deliver their own  messages to their own
followers. In this sense, it establishes the Twitter followers net-
work, where the users are connected among each other, through
links that determine the explicit ways where messages are deliv-
ered. Previous studies have reported complex properties in this
network (Kwak et al., 2010), like degree distribution with power
law behavior, small mean distance between nodes and modular
structure. However, it has been observed that individuals do not
actively interact with all of the declared contacts, but only with
a small fraction of them (Huberman et al., 2009). Among these
active mechanisms to interact, the retweet (or retransmission) is
the most popular one to propagate the received messages through-
out the network. By retweeting a message, users deliver specific
information to their own followers, at the same time that endorse
ideas and gain visibility in the network (Boyd et al., 2010). The
study of the retweets cascades has served to characterize user pro-
files (Galuba et al., 2010), measure influence (Cha et al., 2010) and
propose spreading models (Xiong et al., 2012). At last, all mes-
sages on Twitter, may  be identified using keywords called hashtag.
This mechanism organize conversations and individuals use it to
exchange ideas on specific subjects. Recently, the statistical analysis
of the hashtags usage has let prediction on social relations (Romero
et al., 2011) and collective attention (Lehmann et al., 2012).

2.2. Datasets

Using the Twitter Search API version 1.0,1 we  have built several
datasets from public access messages. This API provides data from
a temporal index of recent tweets, posted within a lapse of a week
from the time the query is made. The limitations of this API are
not specified as a relative volume of messages, nor a fixed number
of queries, but instead a combination of the queries’ complexity
and frequency. The datasets were built querying for messages with
specific keywords related to topics of conversation that captured
a significant part of the collective attention. Their sizes vary from
104 to more than 106 messages or participants, as may be seen in
Table 1.

First, we considered an online Venezuelan political protest as
a case study. This event took place exclusively on Twitter on
December 16th, 2010. Two  days before the protest, the convoker
asked his followers to post messages identified with the hashtag
#SOSInternetVE, who  responded massively and the conversation
propagated becoming trending topic. We  collected up to 421,602
messages, identified with the protest hashtag, which were posted
by 77,706 users, between December 14–19, 2010 (two days before
and after the protest). In our previous work (Morales et al., 2012),
majority of information consumers. Besides, we found that users

1 https://dev.twitter.com/docs/using-search.

https://dev.twitter.com/docs/using-search
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Fig. 1. Complementary cumulative density function (CCDF) of (A) user activity, mea-
sured as the number of messages sent by user; (B) in strength of the retweet network;
(C) in degree of the followers network and (D) out degree of the followers network.
The dashed line marks where about half of the users are located in the distribu-
A.J. Morales et al. / Soci

re organized in a community structure around hubs of different
ature, like politicians, humorists or mass media accounts.

Second, in order to generalize results, other datasets were also
uilt around other conversation topics of different nature such as
ports, news, protests and political campaigns. The first of these
atasets is related to a political scandal that took place on the Span-

sh parliament on 2012 due to some unappropriated comments
rom a congresswoman that echoed loudly on the social networks.
his dataset was built by downloading the hashtag #Andreafabra,
hich corresponds to this person’s name, from July 12th, 2012 to

uly 23th, 2012. The second dataset concerns a conversation about
 Venezuelan baseball team. It was built by downloading the mes-
ages that contained the team’s name leones during a 3 weeks
eriod from December 22th, 2010 to January 12th, 2011. Moreover,
e have built another dataset concerning the 2011 Arab Spring,

y downloading the messages that contained the keyword (and
ashtag) Egypt during a 5 week period, from January 12th, 2011 to
ebruary 17th, 2011. During this period the former Egyptian pres-
dent was overthrown by the social revolts. Besides, two datasets
oncerning the American 2012 elections were built by respectively
athering all the messages that contained the word Gingrich dur-
ng a week period from February 29th, 2012 to March 3rd, 2012,
s well as the word Obama during the first televised debate from
ctober 3th, 2012 to October 5th, 2012. Finally, the last of these
atasets is related to the 2011 Spanish electoral process. It has been
uilt with all the messages that contained the keyword (and hash-
ag) 20N, which was used by all parties in reference to the election
ay on November 20th, 2011. This dataset comprehends the period
rom October 29th, 2011 to November 27th, 2011. In our previous
ork of this electoral process (Borondo et al., 2012), we  character-

zed the user and politicians interactions and found that the mass
edia accounts widely dominated the attention received through

he retweets mechanism, while politicians ruled the mentions sce-
ario.

. Characterizing the spreading behavior

In this section we present the overall behavioral patterns of
he conversation #SOSInternetVE. We  analyze the user activity, as
ell as the underlying social network and the emergent retweet
etwork.

.1. Activity behavior

The user activity Ai is considered as the sum of the original
nd retransmitted messages, sent by each participant i. Its com-
lementary cumulative density function (CCDF) presents a broad
istribution, as can be seen in Fig. 1A, which means that users
articipated quite heterogeneously in the conversation. This dis-
ribution indicates that up to 53.3% of the participants posted at

ost two messages each (dashed line in Fig. 1A), which represents
ess than 10% of the total messages posted, while the remaining
0% of the messages were sent by almost the other half of the pop-
lation (46.7%), who posted more than two messages by person.
he conversation stream was actually fed from a small group of the
ost active users (6% of the participants), who individually posted

rom 16 to around 630 messages, and whose activity represent half
f the overall amount of messages (shadow region in Fig. 1A). Pre-
ious studies on Twitter (Cheng and Evans, 2009), attribute 75% of
he overall messages to 5% of the entire population, which indicates
hat an unusual high amount of users participated in this protest.
.2. Followers network

In the same manner that users post messages quite differently
mong them, these messages have also different relevance in the
tion and the gray regions determine the area that covers half of the samples. The
distributions correspond to the #SOSInternetVE dataset.

conversation development. On Twitter, not all the users account
the same level of visibility in the message stream, because the
number of recipients, and possible readers, strongly depends on
the source’s in degree on the followers network (see Section 2).
This social substratum may  be analyzed by the construction of a
graph with the protest participants, linking the users according to
who follows who. The resulting is a directed and non-weighted net-
work compound by 77,706 nodes and 5,761,331 links, displaying
the structure through which information is delivered and might be
spread. The edge direction goes from the follower to the message
source, thus information flows in the opposite sense of the edges
and therefore the attention received can be measured by means
of the in degree kin. As it can be seen in Fig. 1C and D, the in and
out degree distributions of the followers network present power
law behavior above three orders of magnitude, which is a property
of scale-free networks (Newman, 2005). This indicates that while
51.7% of the population is followed by less than 15 users (dashed
line in Fig. 1C), there exist a very few accounts, like the protest con-
voker, who are followed by over 40,000 users, which correspond
to more than half of all the participants. These popular accounts
are mainly related to mainstream, celebrities, politicians or popu-
lar bloggers, and whose messages are widely received among the
protest participants.

In order to unveil how these heterogeneous users interacted
with each other, we calculated the assortativity by degree coef-
ficient (Newman, 2003) for this followers network. The network
resulted to be disassortative (r = −0.10), which reveals the asym-
metric configuration, where the hubs that concentrate much of the
incoming links, are often targeted by regular users, who do not
receive much of the collective attention. Although social networks

have been reported to be assortative (Newman, 2003), this pattern
changes in the online world, where disassortativity is usually found
(Hu and Wang, 2009). This is due to the new mechanisms that allow



4 A.J. Morales et al. / Social Networks 39 (2014) 1–11

Fig. 2. Visualization of the retweet network emergent from the message propagation on the followers network. (A) Subgraph of the retweet network (green) superimposed
to  the corresponding followers network (black), from the #SOSInternetVE dataset. In the figure a subset of 1000 random nodes (yellow and red) are presented. The node
size  is proportional to the respective in degree on the followers network; (B–D) example of the formation of the retweet network from independent retweet cascades on
an  artificial followers network; (B) when two users (red nodes) post independent messages which are received by their followers (gray); (C) when some users retweeted
the  message (yellow) and this message arrives to their followers (gray); (D) the final shape of the cascades on the network, compound only by the activated nodes (red and
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ellow)  connected by the green links. The white nodes and gray links represent the
ingle  cascade. The black circles determine the cascade layers. (For interpretation o
he  article.)

egular people to interact and communicate with popular accounts,
ike following them in the case of Twitter.

.3. Retweets network

The heterogeneous behavior of the followers network, gives
lace to a high level of disparity in the reception of the messages
nd consequently in the information spreading process. To further
nderstand it, we analyzed the retweet network that emerged from
he mentioned conversation. In this network nodes represent users,
nd edges are created according to who retransmits whose messages.
he edges are directed and weighted according to the number of
imes users retweeted each other, plus the number of subsequent
ropagators that retweeted the same message. This network can
lso be seen as the aggregation of independent retweet cascades,
hat respectively occur when a single message is retransmitted by
ny user to its followers, allowing them and their own followers,
o do the same. An example of the resulting structure is shown in
ig. 2A, where a subset of the retweet network (green edges) has
een plotted, superimposed to the respective subgraph of the fol-

owers network (gray edges). The red nodes represent those who
osted an original message and the yellow nodes represent the
essage propagators (those who retweet). It can be noticed that the

etweet network represents a subset of the followers graph where
essages are actually being propagated. This graph evidences that

eople are more selective to actively interact with their declared
ontacts than just receiving updates from them (Huberman et al.,
009).

In order to explain the dynamical process behind these cascades,
n schema of the evolution of two cascades on an artificial fol-
owers network is sketched from panels B to D in Fig. 2. In panel

 two independent messages are respectively posted by the red

odes and received by their followers (gray nodes). Some of these

ollowers retransmitted the messages (yellow nodes), through the
reen edges, and others did not (white nodes), as shown in panel
. Accordingly, in panel D some of the followers of followers
f the substratum (followers network) who did not activate; and (E) the schema of a
eferences to color in this figure legend, the reader is referred to the web version of

retransmitted the message (also yellow nodes), and the final shape
of the cascades may  be appreciated. To summarize it schemati-
cally, a single retweet cascade from the dataset is presented in
Fig. 2E. The white nodes do not belong to the cascade, as we  only
consider those who  actively participated in the retransmission pro-
cess. Using this schema some of the main cascade properties will be
explained in the remaining section, such as the amount of retrans-
missions gained by user, as well as the cascade size, depth and rate
of retransmission.

The first property we  analyzed is the number of retweets gained
by user, Ri, which may  also be considered as the node i in strength
of the retweet network. This quantity may  increase either from cas-
cades originally seeded by i, as well as cascades where i acted as a
propagator. For example, for the cascade shown in Fig. 2E, Ri would
take the following values: R0 = 15, which is the total number of users
who retweeted the message originally posted by the node 0, either
directly (nodes 1–11) or indirectly (nodes 12–15). Accordingly,
R8 = 2, since the node 8 has been retweeted by nodes 15 and 14;
R1 = R4 = 1, since node 1 and 4 have been retweeted by node 12 and
13 respectively; and finally R2 = R3 = R5 = R6 = R7 = R9 = R10 = R11 = 0,
as no one retweeted them. In Fig. 1B, we present the results of Ri
for the considered conversation. It can be noticed that Ri is dis-
tributed following a power law behavior, where only 25% of the
overall users got retweeted at least once. This means that those
messages from the remaining 75% of users had no effect on the
growth of the retweet network. In fact, this network is widely dom-
inated by 0.4% of the participants, who  concentrated half of the sum
of the users Ri (shadow region in Fig. 1B). After identifying who rep-
resent these influential accounts, we  found them to be compound
by popular users, who often appear in the traditional media and
catalyze the diffusion of opinions behavior, as well as concentrate
most of the collective attention.
Another property analyzed is the cascade size, which is defined
as the total amount of nodes that have been activated in the context
of a given cascade. In the example shown in Fig. 2E the resulting
cascade size would be 16, as we  have 1 author (node 0) plus 15
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Fig. 3. Retweets cascades statistical properties. (A) Complementary cumulative
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Table 2
Pearson correlation (r) by user of the number of followers (F), retweets (R) and
activity (A), from the #SOSInternetVE dataset.
ensity function of the number of users per cascade, (B) cascade depth distribu-
ion P(d) and (C) retransmission rate by layer �l in terms of retweets over followers.
he data correspond to the #SOSInternetVE dataset.

ropagators (nodes 1–15). In the studied conversation, this prop-
rty is distributed following a power law behavior, as presented in
ig. 3A. This indicates that most of the cascades are extremely small,
s more than half of them (60%) are compound at most by 2 persons
esides the author, and just a small fraction are large, since around
% of them have more than 10 users, and 0.03% present more than
00 participants.

In order to understand the cascades structure, we have divided
hem by layers, as shown with the black circles in Fig. 2E. The cas-
ade layer indicates the number of hops from a propagator node
o the source node, through the cascade links. The users corre-
pondent to the layer l = n represent those who  retransmitted the
essage coming from a user of the previous layer l = n − 1. In Fig. 2E,

he message author (red node) stands alone in the layer l = 0, while
n the consequent layers, we find those nodes who retweeted the

essage, like the nodes 1–11 in layer l = 1, and the nodes 12–15 in
ayer l = 2.

The cascade depth d corresponds to the farthest layer from the
essage source, in which a node has been activated. In the example

hown in Fig. 2E, it would take the value of d = 2. In the analyzed
onversation, the probability of a cascade to have a certain depth,
(d), is presented in Fig. 3B. Those cascades of depth d = 0, repre-
ent original messages that were not retweeted by anyone, which
omprehends close to 80% of them. In this sense, only 17% of the
ascades just have one layer of retransmission (d = 1), and this quan-
ity decreases exponentially as we move farther from the message’s
ource, reaching a maximum depth of d = 6 layers with a very low
ikelihood (∼10−5). This indicates that the retweets cascades found
n this conversation are quite shallow, which might result counter-
ntuitive, as we would expect retransmissions to increase directly
o the message’s visibility, which should increase with each retrans-

ission. However, shallow cascades have been detected on Twitter
n works of influence dynamics (Bakshy et al., 2011) and predic-
ion of urls propagation (Galuba et al., 2010), as cases of different
edia, like the flow of emails inside a corporation (Wang et al.,
011). It has been shown that information tends to loose its capac-

ty to attract attention when we move farther from the author’s
ocial surroundings, and hence the probability of a cascade to grow
Topic rF,A rF,R rR,A

SOSInternetVE 0.07 0.57 0.17

is inversely dependent on the distance from the source node (Wu
et al., 2004).

Finally, the rate of retransmission at each layer, �l, is estimated
by averaging the ratio between the number of users who retrans-
mitted a message normalized by the number of individuals who
received it at each layer, taking into account the followers network
information. The results are shown in Fig. 3C, and it shows that
�l ∼ 0.01 for l > 1, while in the first layer the average retransmission
ratio reached up to 5% (�l ∼ 0.05) of the exposed users.

4. Efficiency of human activity

At this point it has been shown a significant heterogeneity in
the users behavioral patterns, in terms of the activity distribution
(number of messages posted) and the attention received (num-
ber of followers and retweets gained). However, the way  these
measures are correlated, and their relation to the user efficiency
to spread information remains unanswered.

In Table 2, the Pearson coefficient between the users num-
ber of followers F (measured as the kin in the followers network),
retweets gained by user R and activity A, are presented. It can be
noticed that there is no correlation between the number of fol-
lowers and activity employed (rF,A = 0.07), which means that the
amount of messages posted is independent of the user position
in the followers network. However, there is a strong correlation
between the number of followers and the retransmissions gained
(rF,R = 0.57), which means that the most retransmitted users tend
to be the most followed ones as well. Besides, there is a positive
correlation between the number of retransmissions and activity
employed (rA,R = 0.17), which indicates that the chances of being
retransmitted increase with every message posted for all users.

In Fig. 4, we present a scatter plot of the retweets gained by user
as a function of its activity and colored by the user kin in the follow-
ers network. It can be clearly noticed that the most retransmitted
users are also the most followed ones (red dots), independently of
their activity. However, some less followed users (green or yellow
dots) may  also gain a significant amount of retransmissions, but by
means of a considerable increase in their own  activity. These users
are located around the straight line of slope 1, and their retransmis-
sions gained are proportional to their activity. Finally, some not so
followed users (blue dots in Fig. 4 below the dashed line), who are
the vast majority of the population, needed to post an enormous
amount of messages to gain, if any, a few retransmissions at most.

The fact that not all the participants must employ the same
amount of effort, to accomplish the same level of retransmissions,
implies that users have an individual efficiency to get their mes-
sages spread by others. This user efficiency, �, may  be understood as
the ratio between the collective response to the individual efforts. It
is a metric of influence in the network, quantified as the amount of
retransmissions gained by user with each message posted, defined
according to the following expression:

�i = Ri

Ai
(1)

where Ri is the number of retweets gained by user i, and Ai is the

amount of messages posted or retweeted by the user i. Those users
whose � > 1 get more retweets than the number of messages posted
and therefore are more efficient to spread their information in the
network and consequently gain more influence, in comparison to
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Fig. 4. Scatter plot of the retransmissions gained by user versus its activity and
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Fig. 6. User efficiency probability density function (A) and complementary cumula-
tive density function (B). The red dots correspond to the empirical results, the black
solid line represents the lognormal fit and the black dashed line represents a power
law  fit. Quantile–Quantile plot (C) of the user efficiency distribution, filtered by the

F

olored by its number of followers. Dots represent users. Data correspond to the
SOSInternetVE dataset. (For interpretation of the references to color in this figure

egend, the reader is referred to the web version of the article.)

hose users whose � < 1, that employed larger efforts to obtain sim-
lar outcomes.

In Fig. 5, we present a scatter plot of the users degree in the fol-
owers network, kin and kout, colored by their efficiency �. It may

e noticed, that the users who present an efficiency � > 1 (green,
ellow, orange and red dots) are mostly located below the dashed
ine of slope one, which means that their audiences (kin) are larger
han their sources of information (kout), which implies a certain

ig. 5. Scatter plot of the user in degree versus out degree in the followers network,
olored by the respective user efficiency. Dots represent users. Data correspond to
he  #SOSInternetVE dataset. (For interpretation of the references to color in this
gure legend, the reader is referred to the web  version of the article.)
in  degree in the followers network K
in

. The distributions correspond to the #SOSIn-
ternetVE dataset. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)

level of popularity in the network. Specially, those whose � � 1
(orange and red dots), who  may  be followed by more than 104

users, but they only follow less than 10 users. Meanwhile, the users
who present a low efficiency (blue dots), tend to receive messages
from much more sources than the size of their audiences (kout > kin),
and also have a smaller amount of followers. This means that these
users hear more information from the network, than what they are
actually listened.

However, the mean efficiency value seems to be close to 1
(Ri ∼ Ai), as shown in the user efficiency � distribution presented
in Fig. 6A, which means that in average most of the users who got
retweeted, gained as many retransmissions as the amount of mes-
sages posted. Besides, the users whose � � 1, represent a minority
part of the population, as clearly shown in the � complementary
cumulative distribution in Fig. 6B. It can be noticed that less than
2% of the retweeted population gained more than 10 retransmis-
sions by message sent (dashed line in Fig. 6B), 0.2% gained over 100
retransmissions by message sent (dotted line in Fig. 6B) and just
one user gained over 1000 retransmissions with a single post.

In order to further understand the � distribution, we  have super-
imposed in Fig. 6A and B the correspondent lognormal curve, with
the mean and variance taken from the empirical observations (see
Table 1). It is known that lognormal distributions arise from multi-
plicative growing processes, like branching processes, as they may
be explained by the central limit theorem, in the logarithmic scale
(Mitzenmacher, 2004). An example of these processes are found in
viral marketing campaigns (Iribarren and Moro, 2011a,b), where
the number of leaves grow multiplicative as the branches split like
the cascades shown in Section 3.3. It can be noticed that the ini-
tial part of the distribution fits quite well the lognormal curve, but
right after its maximum the distribution changes the scaling behav-

ior, apparently to a power law, which we have also superimposed
in Fig. 6A with a dashed line. This means that there is a higher con-
centration of users who gain a larger amount of retransmissions by
message posted, than what is expected for a lognormal distribution.
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Fig. 7. Probability density function of the user efficiency on several Twitter conversations, ordered increasingly according to the number of messages (A–F): (A) Andreafabra,
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B)  Gringich, (C) Leones, (D) 20N, (E) Obama, and (F) Egypt. The properties of these
he  black dashed line represents a power law fit and the red dots correspond to the 

he  reader is referred to the web version of the article.)

hese highly efficient users correspond to the hubs of the followers
etwork as can be appreciated in Fig. 6C, where we have plotted
he Quantile–Quantile plot of the � distribution in comparison to
he lognormal distribution, filtered by the number of followers. If �
ould follow a lognormal distribution, all the points would appear

n a straight line, which actually happens for the users who present
ess than 1000 followers. But, as we consider the most followed
sers, the curve begins to change its behavior, suggesting that the
nderlying network topology is responsible for such deviation. This
oint would be further analyzed in Section 6.1.

In summary, we have seen two kind of users who may  gain a
ignificant amount of retransmissions. One of them, are the highly
onnected users in the followers network, which have no need to
ollow other people, and with a high efficiency, gain a much larger

mount of retweets than their own messages. Meanwhile, there
re other not so well connected users, who may  also gain a lot of
etweets, but in a less efficient way, since they need to post much
ore messages than the highly efficient ones.
rsations may  be found in Table 1. The black solid line represents the lognormal fit,
ical distributions. (For interpretation of the references to color in this figure legend,

5. Universality

In order to identify whether this distribution is constrained to
the present case study or rather represents a consequence of an uni-
versal feature of the interaction mechanism, we have calculated the
user efficiency (�) for other conversations on Twitter. Specifically,
we performed the analysis over six different datasets described in
Section 2 and whose features may  be found in Table 1. All of them
belong to different contexts and their sizes include several order of
magnitude in terms of the number of posted messages and partic-
ipant users. The results of the emergent � distributions from these
datasets are presented in Fig. 7, plotted in ascendant order accord-
ing to their size (from A to F). It can be noticed that the lognormal
distribution emerges, even when the smallest datasets are consid-

ered (Fig. 7A and B). However, as the size of the dataset increases,
the effects of the presence of highly efficient users is more evident
in the distributions, which present a very similar shape as the one
found for the #SOSinternetVE conversation (Fig. 6A).
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Fig. 8. Model results to the user efficiency distribution (left column) and retweets
gained by user distribution (right column), with the empirical results. The model
 A.J. Morales et al. / Soc

Given the fact that the size of the datasets cover from four to six
rders of magnitude and correspond to topics of different nature, it
s remarkable that the resulting distributions present a very similar
hape. This ubiquity of the resulting patterns, strongly suggests the
xistence of an universal behavior in the relation between the indi-
idual efforts, managed by the user, and the collective reaction to
uch efforts, which is an emergent property of the underlying net-
ork. So we open the following question: what factors cause the

mergence of such distribution? In the next section we will propose
 model to explain the emergence of the observed distribution.

. Model

In order to model the propagation of retweets that took place on
he #SOSInternetVE conversation, we propose a spreading mech-
nism based on independent cascades (Goldenberg et al., 2001)
aking place on the followers network. In this model, nodes are
ctivated in analogy to having posted a message, allowing their
eighbors to also activate, like having retransmitted the received
essage, following the cascade schema shown in Fig. 2. Each
essage may  trigger an independent cascade regardlessly of the

uthor’s previous activations. Besides, nodes may  belong and par-
icipate in several cascades at the same time.

In the context of a given cascade, when a node i has been
ctivated, it has a single chance to activate each of its neighbors
followers), j, located at l layers away from the message source.
hus the spreading probability depends on such distance l. In the
ense that, the probability of a node j to retransmit a message at l
ayers away from the source, is given according to the probability of
he cascade to grow vertically and have a depth of at least l layers,
(d ≥ l), and the probability to grow inside the layer l, given by �l.

The user activity Ai is given as the result of all the messages
osted by i: as a source in layer l = 0 (Ai,0) plus all the retweets
ade by i at l steps farther from the message source (Ai,l|l > 0), in

he following way:

i = Ai,0 +
dmax∑

l=1

Ai,l (2)

here dmax is the maximum cascade depth allowed. On one hand,
i,0 is an independent random variable with density distribution
(A0), and represents the initial conditions for the spreading pro-
ess. On the other hand, Ai,l|l > 0 is not independent and it rather
epresents a consequence of the propagation of other nodes’ activ-
ty. Among other factors, this quantity depends on the amount of

essages received by i, which is proportional to the amount of
eople who i follows on the underlying followers network (ki,out).

From this perspective, we define the retransmissions gained by
ser i in the following way:

i =
dmax−1∑

l=0

Ri,l (3)

here Ri,l represents the retweets gained by the node i due to its
iven activations at the layer l in all the cascades. This means that

 node i may  gain retransmissions either from the messages orig-
nally posted by it (Ri,0), as well as from messages retweeted by i
t l layers away from the source (Ri,l). On this basis, the value of Ri,l
epends on the number i’s followers, as well as the followers of fol-

owers, and so on, until reaching the maximum depth considered
or a possible node activation, given by dmax. Hence the sum upper
imit in Eq. (3) is one layer before this value.

In order to simulate the model, we must define the underlying

etwork where the propagation process would take place, as well
s the initial user activity distribution P(A0). Then the messages are
pread taking into account the probability of a cascade to reach l
ayers P(d ≥ l) and the retransmission rate in a given layer �l. Finally
has been applied to the followers network from the #SOSInternetVE dataset (top
panel) and the #20N dataset (bottom panel).

after all the initial activations are performed and the triggered cas-
cades extinct, we  calculate the efficiency � for each user according
to Eq. (1), as well as the correspondent density distribution.

6.1. Results

We  applied the model to two followers networks from the con-
sidered datasets. One of these networks corresponds to the present
case study #SOSInternetVE and the other one is constructed from
the #20N dataset (see Fig. 7D). The results of the user efficiency
and retweets distributions are shown at the top and bottom pan-
els in Fig. 8 respectively. These results correspond to the average
value of 50 model realizations. In both cases, the system has been
initially excited using a heterogeneous user activity distribution in
the form: P(A0) ∝ A−1.4

0 , and the spreading probabilities were taken
from the cascade’s characterization, given in Fig. 3. It can be noticed
that the resulting efficiency distributions in Fig. 8A and C (blue
crosses) present a very good agreement with the empirical data
(open circles) in both cases. In fact, the distributions also present
the different scaling behavior at the right side of the curve. Besides,
the resulting retweets distributions in Fig. 8B and D (blue crosses),
are also in very good agreement with the empirical data (open
circles). These results show that the distributions analyzed are a
reflection of the dynamical process behind the message spreading,
which happens on Twitter by means of the retweets mechanism in
independent cascades, where the probability of a cascade to grow
decays as the message travels through the network, independently
of the social context. After having validated the spreading mech-
anism, we are able to use the model to control the effects of the
different factors that determine the user efficiency patterns, such
as the heterogeneity of the underlying network topology and the
characteristics of the individual user behavior (activity distribu-
tion).
First, we analyze the effects of the heterogeneity of underly-
ing network topology on the spreading process. For this matter we
applied the model to two  different kind of substrata: the followers
networks, from the datasets #SOSInternetVE and #20N, and their
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Fig. 9. Effects of the underlying network topology on the model results in terms
of  the user efficiency distribution (left column) and retweets gained by user distri-
bution (right column). The model has been applied to the followers network (blue
crosses) and their randomized versions (red × symbols). Two  datasets have been
considered: #SOSInternetVE (top panel) and #20N (bottom panel). In all cases, a
heterogeneous initial activity distribution P(A0) ∝ A−1.4

0 has been considered. (For
interpretation of the references to color in this figure legend, the reader is referred
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Fig. 10. Effects of the individual user behavior on the model results in terms of the
user efficiency distribution (left column) and retweets gained by user distribution
(right column). The model has been applied to the followers network (blue crosses)
and  their randomized versions (red × symbols). Two  datasets have been considered:
#SOSInternetVE (top panel) and #20N (bottom panel). In all cases, an homogeneous
activity distribution P(A0) = 1/6 where A0 ∈ [1, 6] has been considered. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
o  the web version of the article.)

andomized versions. These randomized networks were built to
void the presence of hubs and create homogeneous user profiles,
y rewiring the edges so the degree distribution would follow a
ormal curve instead of a power law, but maintaining the aver-
ge number of edges per node. The resulting � distributions after
aving excited the system with the same heterogeneous P(A0) are
lotted by red × symbols in Fig. 9A and C respectively. It can be
oticed that the distributions from these homogeneous networks
resent a different behavior than the ones obtained from the empir-

cal observations and the modelled ones on the followers networks.
here is a slightly lower density of the low efficient users, but more
mportantly, the highest values of the distribution are almost two
rders below the empirical values, apparently following a lognor-
al  behavior. However, the retweets distributions in Fig. 9B and D

red × symbols) still present power law behavior, due to the het-
rogeneity of P(A0), although the probabilities of retweet are lower.
n both cases, this means that an homogeneous society would allow
sers to gain an extremely high amount of retweets, only by means
f employing an enormous amount of initial activity as well, since
he user efficiency is strongly limited to the available connections
n the underlying network.

Second, to study the effects of the individual user behavior, given
y the initial activity distribution, we also applied the model to both
ollowers networks (the case study #SOSInternetVE and the #20N
ataset) and their randomized versions, but in this case consider-

ng an homogeneous P(A0), in the form: P(A0) = 1/6 where A0 ∈ [1,
], instead of the heterogeneous one previously considered. The
esults of applying this homogeneous user behavior to the hetero-
eneous followers networks are presented by blue crosses in Fig. 10.

t can be noticed that the resulting user efficiency distributions in
ig. 10A and C, present the same behavior on the right side of the
urve as the empirical observations (open circles), even though the
onsidered user behavior is radically different than the empirical
web version of the article.)

one. Besides, the retweets distributions (Fig. 10B and D) also coin-
cide quite well with the empirical observations and hardly change
in comparison to the distributions obtained when users posted
messages in a heterogeneous way. However, if we  change the sub-
strata to their randomized versions, the model results no longer
reproduce the empirical behavior and all the distributions loose
their heterogeneity (red × symbols in Fig. 10). This confirms that the
emerging patterns are not dependent on the way users post orig-
inal messages, but instead a consequence of their heterogeneous
connections on the underlying network.

In the case of Twitter, the followers network also represents the
way that the collective attention is organized. On this basis, this
model has shown that if this collective attention is distributed het-
erogeneously among the population, the way users post messages
has no further effects in the efficiency distribution, nor the retweets
distribution, since the high aggregation of users around the influ-
ential ones is what produces such large collective reactions. In turn,
if users would pay attention to each other homogeneously, as the
randomized version of the followers network, then the retweets
gained by user would be a reflection of the frequency and amount
of posted messages, and the efficiency to gain such retweets would
be strongly limited by the properties of the underlying substra-
tum. However, despite the fact that in an homogeneous society
it would be more difficult to find extreme cases of high efficient
users, the density of extremely low efficient users also decreases
when the attention is shared homogeneously among the collec-
tive. Therefore, this evidences that in order for some users to gain
attention from the collective, others must loose it at the same
time.
In summary, we have been able to model the efficiency of users
to spread their opinions during Twitter conversations, and found
that the emergent patterns are remarkable influenced by the under-
lying network topology. We  have shown an evidence of the robust
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ut vulnerable property of complex networks. In the sense that
omplex networks appear to be robust for most of the external
xcitations, as most of people post messages that do not travel
t all, but vulnerable for selected excitations, as the activity per-
ormed by the highly efficient users have a remarkable impact in
he resulting patterns (Watts, 2002). This effect is also measured
hrough the macroscopical property of the percentage of retweets
n the overall posted messages. In the protest 47% of the messages
ere retweets, while our simulations gave 45± 3 % for the followers
etwork and 40.3± 0.1 % for the randomized version. This addi-
ional 5% of retransmissions were only possible due to the complex
rganization of the network.

. Conclusions

While spreading processes have been largely studied across sev-
ral disciplines, accurate models to explain empirical dynamical
rocesses are still an open field. In this paper we have performed

 quantitative analysis of the structural and dynamical patterns of
he activity on Twitter during an online political protest and gen-
ralized our results to other online conversations. We  found that
he activity is fed by a small group of very active users, while the
arge majority hardly participated. As part of this activity there
re interactions that determine the collective attention, which we
ound to be dominated by a very small group of highly influential
sers. However, if any, the rest of users gain influence in propor-
ion to the activity they employ. Although, for the large majority
f users the efforts are usually higher than the results. We  pro-
ose a way to measure this bonding between actions and reactions,
s the ratio between the retransmissions gained and user activity,
hat we understand as the individual efficiency to have messages
pread in the network and hence it can be considered as a mea-
ure to be influential in the information spreading process. We
ound this measure to be universal across several Twitter conversa-
ions, as it is distributed following a lognormal distribution with a
arger density of users at the higher orders, in all the studied cases.

e propose a model to explain the nature of the efficiency dis-
ribution, based on biased independent cascades on the followers
etworks. The model results unveiled the effects of topology and

ndividual behavior into the emergent dynamical patterns. More
articularly, it revealed that the emergence of a small fraction of
ighly efficient users results from the heterogeneity of the under-

ying network, rather than the differences in the individual user
ehavior. In fact, we found that in an homogeneously organized
ociety we would need a much larger population to find the same
evel of influence to diffuse information that we get by complex and
eterogeneous organizing. We  conclude that although individuals
ay  have remarkable psychological and contextual differences, the

ynamical patterns are due to simple and universal interaction
echanisms.
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