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Social media are transforming global communication and coordination. The data de-
rived from social media can reveal patterns of human behavior at all levels and scales of
society. Using geolocated Twitter data, we have quantified collective behaviors across
multiple scales, ranging from the commutes of individuals, to the daily pulse of 50
major urban areas and global patterns of human coordination. Human activity and
mobility patterns manifest the synchrony required for contingency of actions between
individuals. Urban areas show regular cycles of contraction and expansion that resem-
bles heartbeats linked primarily to social rather than natural cycles. Business hours
and circadian rhythms influence daily cycles of work, recreation, and sleep. Different
urban areas have characteristic signatures of daily collective activities. The differences
are consistent with a new emergent global synchrony that couples behavior in distant
regions across the world. A globally synchronized peak that includes exchange of ideas
and information across Europe, Africa, Asia and Australasia. We propose a dynam-
ical model to explain the emergence of global synchrony in the context of increasing
global communication and reproduce the observed behavior. The collective patterns
we observe show how social interactions lead to interdependence of behavior manifest
in the synchronization of communication. The creation and maintenance of temporally
sensitive social relationships results in the emergence of complexity of the larger scale
behavior of the social system.

1 Introduction

The functioning of complex systems, like human societies or living organisms, depends not only upon
the individual functionalities of their parts but upon the coordination of their actions. Self-sustaining
activities, such as economic transactions and associated communications, occur through interactions
among people, creating dependencies among their actions. A central challenge for both sociology and
economics is our ability to characterize the collective action of individuals that together become the
aggregate activity that comprises our society [1]. Recent studies have shown that these processes can be
observed by looking at communication patterns among individuals in social groups [2]. Here we analyze
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Figure 1: Global Twitter Activity. Background map: Twitter activity in each 0.25◦x0.25◦ geographic
area (base-10 log scale at lower right). Rectangular insets: Average week of Twitter activity of selected
cities in Universal Time (UTC) after subtracting the mean and normalizing by the standard deviation.
Square insets: Low (blue) and high (red) points of Twitter activity of several urban areas compared to
daily sunlight periods (yellow) during the nine month observation period (scales on lower left shown for
Santiago are the same for all cities). An animated visualization of the global Twitter activity is shown in
the supplementary electronic material (video S1).

Twitter data to describe the underlying dynamics of social systems. In particular, we study collective
activities across geographical scales, from areas smaller than one square kilometer up to the global scale.

The recent explosion of social media is radically changing the way information is shared among
people and therefore the properties of our society. These new mechanisms allow people to easily interact
with each other and to affordably exchange and propagate pieces of information at multiple scales. As a
consequence, people may be able to engage in types of complex tasks previously dominated by organiza-
tions structured for a particular purpose [3]. By looking for patterns in the aggregate data, we can retrieve
structural and dynamical information about the social system [4]. This represents an unprecedented op-
portunity to study social systems across many scales. Traditional surveys of small samples, which are
typically limited to a few questions, do not have the scale and frequency to capture such population
dynamics [4].

As highly concentrated social systems, cities are manifestly complex systems with emergent proper-
ties [5]. They are self-organized entities made up of multiple complex agents that engage in larger-scale,
complex tasks. Moreover, cities have multiscale structures individually through fractal growth and col-
lectively through size distributions. Their structural patterns have been modeled by scaling laws [1],
archetypes of streets layouts [6, 7] and land use [8]. Human generated data has been used to understand
the dynamical behavior of inhabitants and their impact on the city functioning. Patterns of human activity
and mobility reveal the spatial structure of collective interactions [9, 10] and the dynamical properties of
urban functional areas [11, 12]. Many of these studies use mobile phone data which is available only for
a small set of cities.
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Figure 2: Correlation of the temporal dynamics of cities and heart beats. Left panels: An example of
heart beat ECG signal at approximately 80 beats per minute (red) and the average week of activity for
three cities: São Paulo (yellow), Jakarta (blue) and London (green). Vertical black lines show the time
of synchronization (see text). Right panel: Correlation of the heartbeat with 50000 random series (gray
curve), other heartbeats (red line), periodic signals (magenta lines, from left to right: sawtooth, squared
and sinusoid), and all urban areas colored by group determined by clustering analysis (see Supplement).

In this work, we analyze over 500 million geolocated tweets, posted between August 1st, 2013, and
April 30th, 2014, to explore patterns of social dynamics in urban areas around the world. We collected
these data using the Twitter streaming Application Programming Interface (API) [13], which provides
over 90% of the publicly available geolocated tweets [14] in real time. Twitter is an online social network
whose users share “micro-blog” posts from smartphones and other personal computers. Its population
trends younger, wealthier and urban [15, 16], which makes it a good probe of the dynamics of young
workers in cities. Geolocated tweets provide a precise location of the individuals that post messages, and
represent around 3% of the overall Twitter stream [17]. Twitter activity has been analyzed to understand
human sentiments [18], news sharing networks [19] and influence dynamics [20], as well as global
patterns of human mobility [21], activity [22] and languages [23].

2 Urban Activity

In Figure 1, we show the hourly number of tweets during an average week for a few major metropolitan
areas (rectangular insets) on top of a map representing the global density of tweets during an average day
(52 metropolitan areas across the world are in the Supplement).

To construct the average week, we count the number of tweets in each hour in the urban area i during
the observation period (N weeks), si,t. Time can be written in terms of the hour of the week t = t′
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Figure 3: Spectral analysis of Twitter activity (amplitude of the Fourier Transform) of major urban
areas (more cities in the Supplement). The dashed lines indicate (from left to right) the frequencies (q)
corresponding to the periods of 24 hours, 12 hours and 8 hours respectively.

mod W , where tε{1, ...,W}, W = 168 is the number of hours per week and t′ is the number of hours
since the start of the observation period. We then average the corresponding hours of each week (with
the same value of t) after normalizing by the standard deviation for that day:

si,t =
1

N

N−1∑
w=0


si,t+W (w−1) − 1

D

23∑
σ=0

si,σ+Dbt/Dc+W (w−1)√
1
D

23∑
σ=0

(
si,σ+Dbt/Dc+W (w−1) − 1

D

23∑
σ=0

si,σ+Dbt/Dc+W (w−1)

)2

 (1)

where we use a 24 hour daily index σε{0, ..., D − 1}, D = 24, to define the daily average and stan-
dard deviation. bt/Dc is the integer part of x. We further define an average day as the average over
corresponding hours of the days of the average week:

ŝi,σ =
1

Ω

Ω−1∑
d=0

si,σ+Dd (2)

where σ ∈ {0, . . . , D − 1} and Ω = 7.
Overall, cities present similar patterns of collective behavior, cycling between peaks and valleys of

activity. Such patterns are also found in phone calls [24], electricity consumption [25] and emails [26].
Peaks occur during daytime or evening, indicating that people are awake and active, simultaneously
tweeting from work, recreation or residential areas, whereas valleys occur during night and sleeping
hours, indicating that people are resting and inactive.
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Figure 4: Modeling the Twitter activity of major urban areas by spectral decomposition (more cities in
the Supplement). Hourly number of tweets during an average week (blue dots) are compared with model
results from Eq. 3 (red curves).

The time series’ regular behavior indicates that people synchronize their activities throughout the
day. This synchrony is not solely due to external factors like light and dark or due to biological factors
like circadian rhythms [27]. The second set of insets show low (blue) and high (red) points of the activity
along with the time of sunrise and sunset over the year (yellow shadowed area). The wide range of light
and dark times does not cause a comparable shift in activity times. We calculated the time difference
between the series’ morning valleys and sunrise times, as well as the time difference between the series’
afternoon peaks and sunset times. We grouped these time differences in 10-day intervals, calculated their
distributions and compared with a null hypothesis that the distributions do not change. We found that
the average largest and shortest time differences over the observation period are significantly different
(p < 0.01 for equatorial cities and p < 0.001 otherwise), indicating that variations in the sunset or
sunrise times do not determine the times of peaks or valleys of activity.

Our economic system is based upon transactions, communications and coordination involving the
activities of multiple workers. The completion of tasks within a given time frame depends upon the joint
availability of workers either simultaneously or in the correct sequence [28]. Synchrony has its costs,
as commuting traffic jams illustrate, but many activities are less effective or impossible to do without it.
Synchrony enables couples in relationships to share waking and sleeping schedules. Broad categories of
coordinated behaviors like work, leisure and sleep make up the temporal superstructure which organizes
all other tasks within the daily timeline of a city. For workers on a 9-5 schedule, working at the same time
every day enables them to meet to conduct business activities together, whether in person or by telephone.
Others who work outside of regular business hours are able to provide services like entertainment and
shopping opportunities to those who work during the primary shift. The coordination of social activities
during these off hours is possible because of the synchrony of standard work and rest hours. Biological
circadian rhythms are important for the synchronization of sleeping hours [27] and the interactions of
couples contribute to the synchronization of activities.

Similar patterns arise in the biological activity of living organisms, like heartbeats or respiration,
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or in their collective activity, like in termite colonies [29] or ecosystems like forests [30]. Heartbeats in
particular have properties that appear in some ways similar to urban dynamics. For comparison, we show
in the left panel of Figure 2 the electrocardiogram (ECG) of a 43-year-old male [31, 32] together with
the Twitter activity from São Paulo (yellow), Jakarta (blue) and London (green). The similarity between
heartbeats and Twitter activity is remarkable and quantified in the right panel of Fig. 2 by correlating
ECG signals of individual heartbeats with urban Twitter activity (also see Supplement B). The signature
of a regular heartbeat is obtained by segmenting the ECG into equal average heartbeat intervals that are
further divided into 24 segments (similar to the 24 hours in a day). This signature is correlated with the
ECG and Twitter activity. The correlation is done by placing the minimum value in each period for both
signals at the center of the correlation window. The heartbeats are highly correlated with the Twitter
activity in urban areas, just less than the correlation of heartbeats with each other. The correlations
with the time series are compared with those of 50,000 random time series, as well as with those of
periodic series, in the right panel of Fig. 2. While the high level of correspondence is not essential to
our discussion, the reasons for it can be understood. Both regular heart activity and human urban activity
have three primary periods. The heart experiences a strong (ventricular) contraction, a secondary (atrial)
contraction and a period in which both are relaxing. Human urban collective activity has a primary work
shift, a secondary work and recreation shift, and a sleep shift.

The three fold cyclical Twitter behavior is further analyzed by spectral decomposition (Fourier trans-
form). The spectral behavior of the Twitter activity series from 6 major cities are shown in Fig. 3 and the
remaining cities are shown in the Supplement. All frequency spectra have three significant components
at 24h, 12h and 8h (dashed lines). The first is due to variations associated to the daily cycle, the second
to variations during 12 hours periods, night and day, the third corresponds to periodic variations within
work, recreation and sleep ‘shifts.’

Based on the frequency decomposition, we can model the kinetics by adding three sinusoid signals
of 24, 12 and 8 hours period respectively. In the model, the activity s(t) is defined as:

s(t) = a24 sin(
2πt

24
+ θ24) + a12 sin(

2πt

12
+ θ12) + a8 sin(

2πt

8
+ θ8) (3)

where t is time in hourly resolution, θ represents the respective signal phase, and a is the signal amplitude
in the range [0,1]. We fit the parameters θ and a for each time series by minimizing the quadratic error.
The model fits well the observed data (p < 0.001), as shown in Figure 4 and Supplement F.

3 Spatial Patterns

While there are social behaviors that differ among individuals and cultures, there are also those that
are common and universal such as the very existence of cities and urban areas. In cities, many people
concentrate in a few but dense business or commercial areas during work hours, whereas they disperse
to typically sparse residential areas at rest hours. We expose this behavior by looking at both spatial
variation of Twitter activity and individual mobility patterns. We first disaggregated the average day
of Twitter activity into a lattice of 20x20 patches in each urban area. In Figure 5, we show patches of
local activity for 10 major metropolitan areas after subtracting the average, normalizing by the standard
deviation and coloring the activity above average values (see Eq. 2 where i represents each patch). The
average and standard deviation are for each patch, rather than the whole city (see Supplement C).
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Figure 5: Spatio-temporal dynamics of Twitter activity in urban areas. Each row shows activity during
an average day according to UTC time for the specified city. Colors indicate the normalized excess
of activity from the average value at that location (scale shown in figure). Animated visualizations of
Twitter activity in urban areas are shown in the supplementary electronic material (videos S2-4).
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Figure 6: Distribution of tweets as a function of the distance to the city center (calculated as the center of
gravity of the spatial activity of each city) during the most contracted (blue) and expanded (red) periods
between 9 am and midnight in major urban areas.

In all cities, there are peaks of intense activity occurring near central areas which expand towards
more peripheral areas over time. In Figure 6, we show the distribution of tweets as a function of the
distance to the city center, during the most contracted (blue) and expanded (red) times between 9 am
and midnight. The city center is calculated as the center of gravity of the spatial activity. For each city,
we compared these two distributions, with a null hypothesis that they are similar to each other. After
applying bootstrapping, we found that the average distance of tweets to city center differs significantly
during the most contracted and expanded times (p < 0.001). This effect is also manifest in the hourly
variation of the radius of gyration (rg) in Figure 7. We calculate the hourly radius of gyration by per-
forming bootstrapping at each hour of the day across the whole observation period and averaging across
the same hour of all days. The radius of gyration of each city shows a daily cycle of contraction and
expansion during work (blue shaded region in Fig. 7) and rest hours (gray shadowed regions in Fig. 7)
respectively. Table 1 shows the maximum and minimum values of the radius of gyration between 9 am
and midnight. In all urban areas, the radius of gyration varies significantly (p < 0.001).

We apply bootstrapping in the following way. For each hour of the day h, we take N = 500 sample
sets φh,i of M = 500 tweets j and calculate the tweets distance to the city center dj . Then we calcu-
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Figure 7: Radius of gyration (rg) of tweets during an average day in major metropolitan areas. Series
are shown in local time and have been rescaled by subtracting the average and normalizing by the stan-
dard deviation. Blue shading indicates standard work hours (9-5) and gray shading indicates standard
recreation and rest hours before midnight.

late the average distance µφh,i = 1/M
∑

j∈φh,i dj for each sample set, as well as the average distance

across all sample sets µ̂h = 1/N
∑

i µφh,i , standard deviation σ̂h =
√

1/N
∑

i (µ̂h − µφh,i)2 and stan-

dard error σ̄h = σ̂h/
√
M . We determine hmax and hmin as the times where µ̂h is either maximum of

minimum between 9am and midnight. We determine the p-value that µ̂hmax and µ̂hmin
are part of the

same distribution. Since µ̂hmax and µ̂hmin
are selected from 24 values for extremality, we used extreme

value theory [33]. Using Monte Carlo sampling, the p-value that µ̂hmax is within the µ̂hmin
distribution

and vice-versa is p < 0.001 in all cases shown and over 90% of the cities present in the supplement.
Analogous procedures are performed with the radius of gyration obtaining similar results.

Second, we analyzed the most frequently visited locations of each user. By applying a clustering
algorithm [34], two clusters of frequently visited locations were identified (see Fig. 8). In one cluster,
most tweets are sent during work hours (after 9am and before 5pm), while in the other cluster most tweets
are sent during rest hours (after 8pm and before 2am). This technique has been used to identify work
and home locations from mobile phone data [35]. In general, work locations are less homogeneously
distributed than residential locations. We counted the number of work and residential locations in each
patch of the 20x20 grids respectively. We found that work locations are more spatially clustered, which
results in a higher spatial heterogeneity (similar to Gini) coefficient (Fig. 8 C). Moreover, the average
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Table 1: Maximum and minimum radius of gyration (rg) of tweets during an average day for 8 major
metropolitan areas in kilometers. The difference of their magnitudes is significant (p < 0.001). Other
cities are in Supplement C.

City Max. rg Min. rg City Max. rg Min. rg
Tokyo 23.855 ± 0.552 21.413 ± 0.612 Jakarta 13.671 ± 0.265 12.826 ± 0.270

Bangkok 15.047 ± 0.382 13.251 ± 0.401 Moscow 11.157 ± 0.183 9.516 ± 0.219
Paris 4.066 ± 0.053 3.690 ± 0.061 London 13.545 ± 0.255 11.892 ± 0.320

New York City 38.150 ± 1.119 35.572 ± 1.158 Mexico 12.977 ± 0.368 11.135 ± 0.359

Figure 8: Clusters of frequently visited locations according to the time of the day of individual activ-
ity. Dominant location clusters have primary activity during either conventional work (9-5) or rest hours
according to local time. A. Total activity in all cities at clusters whose primary activity is during con-
ventional work hours. B. Like A but for clusters whose primary activity is not during work hours (scale
is shown in the figure). C. Geographical heterogeneity (similar to Gini) coefficient of conventional work
and rest hours locations.
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Figure 9: Multidimensional scaling and clustering of city activity according to their time series vec-
tors. Colors indicate the results of the clustering algorithm (see text). Star symbols represent Asian and
Oceanian cities. Circular symbols represent Mideastern, European and African cities. Triangular sym-
bols represent South and North American cities. Axes correspond to reduced dimensions obtained from
multidimensional-scaling.
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distance between residential locations with respect to the city center is significantly larger from that
of work locations (p < 0.001 for half of the analyzed cities), indicating that home locations are more
widespread.

Despite overall similarities, cities have distinct signatures in the number and shape of peaks of activity
both in time (Fig. 1 and 2) and space (Fig. 5). By applying a clustering algorithm [34] to the time series
vectors, starting from the minimum of activity, we found an optimal partition [36] of three clusters of
cities with remarkable cultural and regional affinity. These clusters have been colored accordingly in
Figures 1 and 2, as well as in the dimensionally reduced space [37] shown in Figure 9. One class of
cities, including Jakarta and other Asian and Oceanian cities (blue series in Fig. 1 and blue symbols
in Fig. 9), has a single large peak of activity during the day. Another class, including São Paulo and
multiple North and South American cities (yellow series in Fig. 1 and yellow symbols in Fig. 9), has two
small peaks of activity in the morning and a large peak in the evening. Finally, a third class, including
London and multiple Mideastern, European and African cities (green series in Fig. 1 and green symbols
in Fig. 9), has two equally sized peaks of activity, respectively at morning and afternoon. Differences are
also manifest spatially (Fig. 5). Asian cities (top three rows) gradually increase their activity (colored
patches), showing spatial peaks, and rapidly decrease (black patches). European cities (middle three
rows) have a strong spatial peak of activity in the morning near the center of the city and other dispersed
peaks in the afternoon at peripheral areas. Finally, North and South American cities (bottom three rows)
have several smaller peaks of activity around multiple centers and one large peak at the end of the day
throughout the city. Interestingly, the morning peaks of the European cities coincide in time with the
large afternoon peaks of Asian cities (see columns 8h to 10h), which is an indication of synchrony. This
synchrony is manifested as simultaneous peaks of activity in the time series (vertical black lines in Fig.
2 and Supplement A). It turns out that some of these differences can be traced to global patterns of
behavior.

4 Global Synchrony

In Figure 10 A, we show patterns of collective behavior at a global scale after aggregating tweets by
longitude. Each longitude has cycles of activity, similar to those of individual cities (Fig. 1, 2 and 5).
Minima (white dashed line) and maxima (black dashed line) shift from east to west due to diurnal syn-
chronization of sleep and wake cycles and the Earth’s rotation. The ubiquity of this pattern manifests
homogenization in habits and customs among globally differentiated cultures and social contexts. Fur-
thermore, there is a specific synchronization in Figure 5 that is actually a global phenomenon. Distinct
from the other behaviors that track the daily period and therefore are diagonal, between longitudes 0 to
180, a horizontal line (black) shows a simultaneous peak of activity that occurs daily across the Euro-
pean, Asian, African and Oceanian continents. This horizontal peak reflects large scale dependencies
across half of the world.

The synchronization of activity is manifest in a dynamic correlation network between nodes repre-
senting cities, whose edges appear when the urban time series are correlated above a given threshold
(r > 0.9). Correlations are calculated by using overlapping time windows of 12 hours across the cities’
average day time series. Highly synchronized cities have stronger connections with each other than with
the rest of the network. In Figure 10 B and C, we show two snapshots of the correlation network at
different times. Cities are generally linked within times zones, because it is natural for cities to be syn-
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Figure 10: A. Temporal dynamics of an average week of Twitter activity by longitude. The vertical axis
represents time (increasing from top to bottom) and the horizontal axis represents longitude. Significant
cities are indicated at the top. Diagonal dashed lines show peaks of activity (black) and inactivity (white)
tracking the time of day. Horizontal line (solid black) indicates synchronous linked activity across Eu-
rope, Asia, Africa and Oceania (scale on right). B. Urban correlation network across a time window from
3pm to 3am UTC. C. Like B but across a time window from 1am to 1pm UTC. Colors indicate the results
of a clustering algorithm [38], after aggregating the networks over time. An animated visualization of
the urban correlation network is shown in the supplementary electronic material (video S5).
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Figure 11: Deviation from the average number of directed mentions (top) and shared hashtags (bottom)
between the European and Asian longitude ranges during an average day in units of standard deviations
(Z-score). Gray shadowed regions represent the synchronized times.

chronized to those in similar longitudes (Fig. 10 B). However, at the time of global synchronization (Fig.
10 C) cities across Eurasia and Africa are strongly coupled, manifesting their synchronous activity. Such
global synchronization can be expected to arise in the context of increasing global interactions consistent
with synchronization in many complex systems [39].

For additional evidence that synchronization arises from social interactions, we studied directed mes-
sages in the content of tweets (mentions) and topic identifiers (hashtags) between the European and Asian
longitude ranges (see Fig. 11). We found that the number of interurban directed messages and common
hashtags simultaneously peak during the synchronized time. At this time a significantly larger number
of directed messages are sent between these regions and more hashtags are shared in their messages with
respect to other times of the day (p < 0.001). These results indicate that people tend to share more
information about increasingly similar topics as they synchronize their activities.

We model the global synchronization process with an iterative dynamical model based on the ten-
dency of tweets to trigger other tweets. The full model includes the tendency of people to tweet before
going to bed and absence of tweets at night. The model is defined by the iterative map in the changing
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Figure 12: Top panels: Model outcomes for multiple values of intercity influence at multiple longitudes
(α) and night activity (β) with the same initial conditions. Longitudes are represented in the x-axis and
universal time is represented in the y-axis (see bottom left panel for scale). Colors indicate the level
of activity (scale shown in figure). We normalize the cities activities by their maximum value. Bottom
panels: Average model outcomes after introducing the effects of large inactive areas-oceans. Parameters
α = 0.4 and β = 0.2. The blue series indicates the number of active cities (x-axis) at each time of the
day (y-axis). Color scale is similar to top panels.
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daily dynamics of a city:

si(σ, τ) = si(σ, τ − 1) + α
∑
j 6=i

sj(σ, τ − 1) + β
∑
σb

δ(σ − σb) (4)

where si represents the temporal activity of city i, σ ∈ [0, 23] indicates time of the day, τ represents day
to day changes which is our iterative variable (we ignore weekend differences for this purpose), and σb
indicates the location dependent time of evening activity. Parameters α ∈ [0, 1] and β ∈ [0, 1] indicate
the weights of intercity influence at multiple longitudes and evening activity respectively. Activity is set
to zero between times 0 < σ < 8. We normalize si(σ, τ) at each iteration so that

∑
σ si(σ, τ) = 1. At

τ = 0, si(σ) is set to random values.
In the top panels of Figure 12, we present the outcomes of the model for multiple values of intercity

influence (α) and evening activity (β). The initial conditions vary among cities but do not change for
different α and β configurations. The blue diagonals indicate local sleeping times. If α = β = 0, the
model results in an independent random distribution of activities among cities. For positive values of α,
cities are able to influence each other and horizontal stripes emerge, indicating the synchronization of
activities in cities at multiple longitudes. The horizontal stripes emerge at the times where the sum of
initial conditions are slightly higher and therefore symmetry breaks. Similarly, higher values of β result
in peaks of activities before sleeping time (red diagonals). Both behaviors are simultaneously found for
intermediate values of these parameters (i.e. α = 0.4 and β = 0.2).

We add an inactive ocean to the model in the bottom panel of Figure 12 and average over 100
realizations of two specific parameter values. The inactive areas affect the number of active cities at each
time of the day. As a result, the synchronized peaks of activity (red horizontal stripes in squared panels)
emerge at the times where most of cities are active (blue curve in rectangular panels) and consequently
the sum of initial conditions is consistently higher. These results show that synchronous peaks of activity
emerge from reinforcement and interaction mechanisms.

5 Conclusion

The patterns we identified manifest how social activities lead to dependencies among the communica-
tion between individuals, especially their synchronization. Synchronization may arise because of explicit
coordination, but more generally occurs due to availability of individuals to perform actions when oth-
ers trigger responses from them. Urban synchrony is manifest in each urban area. We have found that
global synchrony appears to be arising in the context of increasing global communication. Through syn-
chronization, the timing of human communication and activities becomes constrained to the norms and
conventions of the social environment. As people create and maintain temporally sensitive relationships,
the complexity of the larger scale behavior of the social system increases. These collective behaviors
may be linked to collective capabilities that provide products, services and information that cannot be
obtained by an individual alone.
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