Chapter 78
Characterizing and Modeling Collective
Behavior in Complex Events on Twitter

A.J. Morales, J. Borondo, J.C. Losada, and R.M. Benito

Abstract All around the world people are increasingly using Internet and online
social networks to relate among each other. This fact is bringing a unprecedented
amount of user generated data, which is certainly attracting research on several
fields. In this work we analyze the user interactions in Twitter around two politi-
cally motivated events, like a Venezuelan protest and the 2011 Spanish Presidential
electoral campaign. We found that users participated quite heterogeneously, as a tiny
fraction of them concentrates much of the activity or collective attention. This het-
erogeneity gives place to critical features, like interaction networks with power law
distributions and modular structure. Although online social networks appear to be a
pure social environment, we found traditional agents, such as well known politicians
and media hold loads of influence among the participants.

Over the past years, new technologies and specially online social networks have
penetrated into the world’s population at an accelerated pace. An important feature
of these communication tools is that they provide a large amount of user generated
content, useful for research on political activism [1, 2], marketing techniques [3]
and social influence dynamics [4]. In this study, we use data available from Twitter,
to unveil and analyze the structural and dynamical patterns from the user interac-
tions, in order to characterize the emergent collective behavior. We have focused
our study around two relevant events: a Venezuelan political protest, that took place
exclusively online, and the 2011 Spanish Presidential electoral process. On these
events, users posted messages identified with special keywords, such as #SOSIn-
ternetVE for the Venezuelan protest and #20N for the electoral campaign. These
special keywords identified the topics which messages we downloaded, using the
Twitter API. The properties of these datasets are presented in Table 78.1.
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Table 78.1 Datasets

properties Topic Period Messages  Participants
20N Nov. 5-20, 2011 370000 100000
SOSInternetVE ~ Dec. 14-19, 2010 420000 77700
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Fig. 78.1 Complementary cumulative distribution of messages sent by user (fop) and Message
rate through time (bottom). The left and right panels correspond to 20N and SOSInternetVE topics
respectively

The distribution of the user activity, in terms of messages sent by user, as well
as the message ratio through time, are shown in Fig. 78.1. The results indicate that
users participated in an extremely heterogeneous way. In both cases, we found that
the large majority of users (over 90 %) posted only a few messages each, while
half of the messages were posted by less than 10 % of the participant population.
This fact implies that the conversations were actually fed by a small portion of very
active participants. Besides, both topics grew in a bursty manner, as can be seen in
the bottom of Fig. 78.1, where the activity is heterogeneously concentrated in time.
It can be noticed that a single conversation may grow up to 60 % of its final size in
less than 8 hours.

However, not everybody’s messages (or activity) have the same impact on the
development of the event, since it remarkably depends on the source’s connectivity
inside the social substratum. To analyze this matter, we have constructed networks
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Table 78.2 Followers,

Retweet and Mention Topic TF,R TF.M TM,R TAR

networks degree Pearson

correlation (r) 20N 0.55 0.44 0.35 0.30
SOSInternetVE 0.57 0.70 0.85 0.15

based on “who follows who”, which are subgraphs of the Twitter’s global followers
network, made with the events participants. On Twitter, when a user posts a mes-
sage, this is instantaneously delivered to his/her own followers. Therefore, these
networks represent the social substratum and available channels through which the
information may flow along an event. In Fig. 78.2 we present the in and out degree
distributions, which illustrate the heterogeneous connectivity found among the par-
ticipants. In fact, while the large majority of users are followed by less than 20 users
each, half of the social links are targeted to less than 2 % of the users. This means
that the messages written by these hubs are delivered (and probably read) by half of
the participants.

This heterogeneous connectivity gives place to an heterogeneous collective atten-
tion. To study so, we have also built other networks, linking the participants accord-
ing to “who retweeted (retransmitted) who” and “who mentioned who”. These inter-
action mechanisms display effective links where messages were propagated and se-
lectively delivered, respectively. These networks have directed and weighted edges,
and the in and out strength distributions are also presented in Fig. 78.2. It can be ap-
preciated that both mechanisms are scale-free at the incoming links, which are the
result of the aggregation of individual efforts, reflected in the out strength distribu-
tion. In fact, while the large majority is hardly mentioned or retweeted, less than 1 %
of the participants, concentrate half of the mentions and retweets. Such an exclusive
elite concentrates the largest part of the collective attention in both mechanisms.

Influence in Twitter has been considered to depend not only on the user’s topo-
logical features in the followers graph, but also on the user’s topological features in
the retweet and mention graphs [4]. In the two considered cases, these measures are
remarkably correlated, as may be seen in Table 78.2, where we present the Pearson
correlation for the in degree and in strength values across the three networks, which
resulted to be positive at all cases. We detected that the small fraction of hubs (who
are influencers among the participants) act like information producers, posting mes-
sages widely delivered and retransmitted throughout the network. On the other hand,
we found that the large majority of users act like information consumers, either ac-
tively or passively. Nevertheless, in order to gain influence, the regular users must
play an active part in the conversation, as we demonstrated in a previous study [1],
where we detected several cases of regular users who equaled the retransmission
levels gained by popular accounts, by means of increasing their activity several or-
der above. This is also supported by the positive Pearson coefficient between the
retweets in strength and the user activity, also presented in Table 78.2.

In order to unveil how such heterogeneous users interacted with each other, we
calculated the assortativity by degree coefficient [5, 6] for all networks. The results
presented in Table 78.3, show that the emergent networks from Twitter are disassor-
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Fig. 78.2 Degree distribution of the Follower Network (top left), strength distribution of the
Retweet Network (fop right) and strength distribution of the Mention Network (bottom). The top
and bottom panels correspond to 20N and SOSInternetVE topics respectively

tative. This result displays the asymmetric shape of these networks, where the hubs
that concentrate much of the incoming links, are often targeted by regular users,
who neither mention nor retweet too much, and receive few of the collective atten-
tion. Previous works on network assortativity [5], state that social networks tend to
be assortative, as popular people want to be friend with popular people, and regular
people are usually friends among the regular people. However our measures indicate
something different. Hu and Wang [7] reported that other online social networks are
also disassortative. The reason for this observations, relies on the difference between
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Table 78.3 Assortativity by

degree of the followers Topic Followers Retweets Mentions
retweet and mention networks
20N —0.09 —0.06 —0.09
SOSInternetVE —0.10 —0.15 —0.14
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the online and offline world. For example, in Twitter regular people are now able to
relate and communicate with popular accounts, either by following, mentioning or
retweeting their messages. These new kinds of interactions are responsible for the
changes in the structural and dynamical patterns previously reported on social net-
works.

Such different profiles also give place to the emergence of community structures,
as the information consumers usually participate around their preferred information
producers. In order to unveil such structures, we have performed community detec-
tion analysis based on modularity optimization [8] and random walks [9]. We have
found that the retransmission and mention graphs present a higher modular structure
than the followers one, being the retransmission graph even more segregative than
the mentions map. Such structural differences reinforce the idea that the retrans-
missions and mentions channels are a substructure of the social substratum that
endorses the individual preferences, and also indicate that people are more selective
when taking action, than when just receiving the information [1].

On top of this, we have also found that the information producers, at the core
of each community, are usually related to mainstream, celebrities or politicians ac-
counts. This lead us to state that even though online social networks appear to be
a pure social environment, traditional media agents hold loads of influence inside



648 A.J. Morales et al.

the network, that they use to boost their messages. However, according to the na-
ture of the event and the interaction mechanism, some collectives may play a more
influential role than others among the users. For example, in the 2011 Spanish elec-
toral process [2], mentions are mostly targeted to politicians, while retransmissions
are dominated by mainstream, since the first mechanism is used to send personal
opinions and the other one is used to rapidly propagate information like news.

Finally, we have been able to model the modular and segregative structure of the
mention and retransmission graphs, based on the formalism of heterogeneous prefer-
ential attachment [10], by designing connection rules for both micro and mesoscale.
The idea behind this model is that the probability of a node i interacting with a node
J not only depends on their respective degree, but also on an affinity value between
them. This affinity value comes from a function that allow us to tune the mesoscale,
independently from the microscale connectivity rules.

We tested this model with the mention and retweet networks of the Spanish elec-
toral process, filtered by official politicians accounts. We found these subgraphs to
be highly segregative, since the Pearson coefficient across parties are very close to 1
(rp =0.905 and rg = 0.990), indicating a considerable lack of debate between the
politicians. To model the mesoscale, we first calculated the affinity value across po-
litical parties, as the relative flux of interactions among them. In Fig. 78.3 we present
the real and modeled strength function for both networks. It can be noticed that the
model reproduces very well these distributions, as well as the Pearson coefficient
across parties (ry = 0.86 == 0.03 and rg = 0.989 £ 0.005).

In summary, our study reveals the complexity behind the interactions among
users and the information diffusion process during particular events on Twitter.
These interactions allow us to characterize and model the user’s individual and col-
lective behavior. We found that these topics were fed by a small portion of very ac-
tive participants and driven by a smaller portion of very noticed influencers. These
influncers are mostly related to main stream and celebrities, who use the social net-
work to boost the importance of their messages. However, we found that influence
might always be boosted by any participant when the activity is remarkably in-
creased. The results obtained bring new insights into how people relate with each
other in these communication tools and may serve as frameworks for professionals
who use them, in order to maximize the network’s potential.
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