Chapter 1

On Motif Statistics in
Protein Spatial Networks

Blake Stacey

In recent years, networks derived from complex systems have been studied not
just in terms of global properties like degree distributions, but also in terms of motifs,
small subgraphs whose appearances can be examined statistically. Motifs which occur
more often than chance predicts are often presumed to indicate some feature of local
structure which is preferred for biological, physical or geometrical reasons. We test a
claim made in R. Milo et al., Science 303 (5 March 2004) to the effect that protein
structures can be approached in this way, studying not three proteins but a set of 830.
Overall, the general claim of the earlier paper is borne out: the spatial distribution of
secondary-structure elements can be roughly understood as a geometrically constrained
network. Structures of individual proteins are reflected in the clustering coefficients
of the networks derived from the protein geometries. The investigation of a network
growth model based on geometric constraints reveals a conceptual link with entropy-
estimation techniques invented for high-energy physics.

1.1 Introduction

Connecting points with lines has been a way of thought for a very long time.
In the fourteenth century, theologian Ramon Llull tried to understand Jehovah
with a complete 8-graph whose nodes were labeled Veritas, Gloria and so forth[4].
In 1978, science historian James Burke described our technological society as a
network, “each part of which is interdependent with all the others,” so that a
failure in one place—say, an electrical relay in the Adam Beck T'wo power station
at Niagara Falls—can have severe effects far away, like the Great Northeastern
Blackout (compare [1, 3, 16]). Burke used the network as a metaphor, a tool for
exploring how our society sustains itself as well as the insolubly wedded question
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of how our science and technology advance[5]. In later years, quantitative data
became available on a wide variety of complex worldly affairs: protein interac-
tions, organism genomes, the global computer web Burke described in its earliest
stages, and more. The presence of this interdisciplinary data has made possible
interdisciplinary research, and the apparent detection of ubiquitous features has
been greeted with wide acclaim. After the discovery of the scale-free hammer,
we have been able to treat all observable systems as nails.

Much discussion has transpired about global properties of networks which
live in abstract spaces, but it is also interesting to look at local properties of
graphs embedded in familiar, Euclidean space. We may expect that network
models will be most useful in studying those systems whose fundamental parts
are all alike or described by few parameters apiece, say a single numerical weight
per node, with all other information encoded in their interrelationships. We treat
all cities as interchangeable, or labeled only by their population. Whether this
is a reasonable approximation can only be determined by assaying its predictive
power and its correspondence with experimental observations. (Likewise, we
often neglect the distinguishing features of the connections, drawing them all in
the same color and with the same thickness.) Here, proteins were analyzed at two
levels. First, individual amino-acid residues were treated as nodes and connected
if their C,, atoms were closer than 8 A (per [11]). Then, in the second approach,
secondary-structure elements were mapped onto vertices. Each a-helix or (-
sheet became a node, and nodes were connected if their corresponding structure
elements came within 10 A of each other. a-helices and (-sheets are three-
dimensional objects, of course, so the distance between them is defined (with
appropriate arbitrariness) to be the minimum separation between C, atoms
of their respective amino acids. This information can be computed from the
protein’s PDB file with relative ease.

One method to study these local properties is to hunt through it for repeated
motifs, subgraphs containing a few nodes apiece, in the hope that a subgraph
which occurs many times is physically or biologically significant[14]. Milo et al.
advance the claim that a particular set of four-node motifs are “overrepresented”
in protein structure; that is, these particular motifs occur in protein geometry
more often than expected by chance. However, this claim was only supported
by three proteins[13]. In this paper, we shall examine how well it applies to 830
more.

1.2 Sequence Profiles

Given a network (produced by whatever means), we can count the number of
times a particular subgraph occurs. Take a set of motifs labeled by 4, and let
the number of occurences for each motif be n;. (In this paper, i = 1,...,6.)
The quantities n; are not the most convenient way to measure the abundances
of network motifs, since they scale with the overall network size. Besides, the
quantity of real interest is not how many times a particular grouping of nodes oc-
curs, but how many occurences we find compared to what we would observe due
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to random chance. Imagine a randomized ensemble of networks, each with the

same degree profile as the original, but with the edges rearranged. Presumably,

if a particular motif is prevalent (or lacking) for biological reasons, it will occur

more (or less) frequently than in this randomized ensemble. (In a soap opera of

order N, how many love triangles do we expect to see?) We define a measure of

the statistical significance of a particular n;, relative to chance expectation:
z,= i) (1.1)

(ri).

Here, (r;) denotes the mean number of times motif ¢ occurs per network, averaged
over all networks in the ensemble. The cumulant in the denominator, <ri2>c, is
the variance of r;, likewise computed over all the randomized networks.

The networks in the randomized ensemble were generated by swapping edges
in the network generated from the protein geometry. This method has the
advantage that it preserves connectivity properties of the network: each node
will have the same number of ingoing and outgoing connections as it did in the
original.

To compare Z-scores calculated for different proteins, we introduce a new
variable, S;, which is normalized so that the sum over all 7 is unity:

Zi
Nowa
The set {S;} is termed the sequence profile. Alternatively, it may be preferable

to use a different measure of statistical significance, which we shall term the
D-score:

(1.2)

i =

p, ==l (1.3)
n; + (r;) + €
Here, € is a constant of order unity chosen at the investigator’s convenience.
(To compare our results directly with those of Milo et al., we have made our
calculations with € = 4.) D; can naturally be normalized in the same way as Z;.
This method suffers from several drawbacks. Consider, for example, an ar-
rangement such as the network of neurons in an animal brain, where it is difficult
for nodes separated by a large physical distance to connect. In this case, we might
find groups of neighboring nodes connected more strongly than chance expec-
tations only because they are situated near each other, and not for any reason
having to do with biological selection. A “toy model” has been constructed, in
which nodes are stochastically connected to proximate neighbors (connections
being formed with a probability that falls off as a Gaussian). Analyzing the
resulting networks shows the same prevalent motifs as Milo et al. find in the
C. elegans neural connection structure[18]. Such toy models do, however, show
motifs which do not appear in “real” networks, indicating that the sequence-
profile method is not entirely fragile, as long as the entire sequence profile is
studied[15].



4 Motifs in Spatial Networks

Effect of Duplication
S
A B - W 2copies
gcq _| @ 3copies
¢ 3° W 4 copies 6
1
1 (4382) 2 (4696) 3 (4958) % g ] 028
M /
g3 I=—¢
E
=y}
58 /
4(13260) 5 (13278) 6 (31710) 3 - ¢ e $ 2 $ Q
1 2 3 4 5 6
Motif

Figure 1.1: (A) The six motifs which Milo et al. explore in protein structure, with
their MFinder[17] ID codes. Motifs 3, 5 and 6 are claimed to be “overrepresented”. (B)
Spurious sequence profile produced by setting n; = (r;) and then scaling.

Another issue arises when the network under scrutiny exhibits symmetry.
Consider a protein which is made of multiple peptide chains, organized into do-
mains such that the protein is composed of perhaps four closely similar pieces.
Neglecting the “edge effects” of one domain’s a-helices touching another’s, the
network for the entire protein is just the graph of the domain, duplicated with-
out overlaps.! Duplicating by a factor d amplifies each n; by d, but it also affects
the ensemble of randomized graphs we use for comparison. Because the degree
profile is unaltered, the probability that a given subgraph plucked from a ran-
domized graph will exhibit motif 7 is unchanged, but the number of ways to pick
a subgraph grows with the network size. Using the results of [9], one can show
that (r;) scales as d" ', where n is the number of nodes in the motif (here 4) and
l; is the number of internal links. The net effect is to bias the sequence profile
towards those motifs with higher [;. If D; is identically zero, the combination of
symmetry and scaling creates a wholly spurious sequence profile.

1.3 Spatial Graphs

As indicated above, one complication is the issue of geometry. “Classic” scale-
free (SF) graphs like the actor-film network are not embedded in space; what are
the effects upon the motif profile of requiring that our graph be grown in a Eu-
clidean world? Following the example of Herrmann, Barthélemy and Provero|6],
we consider vertices scattered randomly throughout a unit volume according
to a probability distribution p(z). Vertices will be linked if they fall within a
chosen distance R from one another. Graphs of this type occur in a variety of
circumstances, from telecommunications to gene-expression microarrays, listed
conveniently in [6]. In a more sophisticated model, vertices can be connected
with a probability which depends upon their distance, such as a Gaussian fall-off.

IThe three proteins studied in [13] are all multi-domain polypeptides: an oxioreductase
(PDB code 1AOR), a serine protease inhibitor (1IEAW) and an immunoglobin (1A4J).



Motifs in Spatial Networks 5

The hard-sphere case which [6] studies explicitly can be taken as a reasonable
first approximation.

Given a network presumably grown by a geometrical process, we would like to
infer some characteristics of p from the statistical properties of the network. One
such summary characteristic of p is the probability that two randomly chosen
nodes will share an edge, knowing nothing else. If x(x, y) is the “cutoff” function
defining the proximity condition,

p=/dwdyp(w)x(w7y)p(y)- (1.4)

Another property of interest is the clustering coefficient, defined to be the prob-
ability that two neighbors of a randomly chosen node will themselves be directly
linked. In the spatial model, C' is given by the probability that two points zo
and x3 randomly chosen within the “acceptance zone” of x1 are themselves close
enough to be linked:

C= /dmldmgdmg pla1)x (@1, x2)p(x2)Xx (21, 23)p(x3) X (22, T3). (1.5)

If we know p and C, we can estimate the probability that a small subgraph
of n nodes drawn from the full network of N will exhibit a particular motif.?
We ask with what likelihood each connection in the motif will be drawn, and
we multiply these factors together; for a 4-node motif, a total of six links could
possibly be drawn, and thus the total probability will be some combination of
six factors taken from the set {p, (1—p),C, (1—C)}. The specific combination is
determined by the motif topology. We can estimate the quantity of each motif
seen by multiplying the expressions in the table by < ]7\1[

As the authors of [6] note, it is possible to grow a scale-free (power-law)
network embedded in Euclidean space by a judicious choice of p(z). The as-
sumption that p and C are roughly sufficient to characterize p is equivalent to
saying that p is “well-behaved” in such a way that this will not happen; further
discussion of this point lives in [8] and the Appendix.

We constructed a Python program to implement this model of graph forma-
tion. The program randomly chooses points within a 3D unit volume, makes
pairwise connections based on a user-defined threshold, calculates summary
statistics and outputs the network in MFinder-ready format[17]. Fig. 1.2(C)
shows the results, the salient feature being that the model predictions corre-
spond with the motifs as measured by MFinder.

1.4 Protein Analysis

The dataset was obtained from Uwe Hobohm and Chris Sander’s PDB_SELECT
list of Protein Data Bank chain identifiers.[7] PDB chain IDs in PDB_SELECT are

2This is done “between the lines” in [13]; see also [8].



6 Motifs in Spatial Networks

Motif 1 " Motif 2
A - — C & - 51 ’
Motif Probability ¢ o o
1 p3(1 —C)° 2 g
2 p?(1—-0)%(1 —p) it L il S
3 p3(1 —0)2C
y 4 v 2 Motif3 Motif 4
5 pra-0) | g :
6 pSCS i . 2
B § - | 4 Motif5 _ Motif 6
58 2] .
o~ | iy
(S I g
2 eIt s

Preclicted Precicter

Figure 1.2: (A) Table of motif occurence probabilities. (B) Average clustering coeffi-
cient per node as a function of node degree for randomly-generated spatial graphs. (C)
Motif counts for randomly generated graphs, as measured by MFinder and predicted
theoretically.

chosen such that no two peptide sequences are more than a chosen percentage
homologous; sequences used here were taken from the 25% list. Only one domain
from each protein was used. For AA-level analysis, the largest a-helix and the
largest O-sheet were drawn from each protein; in the second case, all secondary-
structure elements in the domain marked in PDB_SELECT were converted to ver-
tices. A Python program was used to extract the pertinent information from the
PDB files, construct the corresponding graphs and output them in a format that
the MFinder code is able to understand. The Python code accepts the threshold
distance (in A) as a user-defined parameter, and the analysis was conducted at
thresholds of 10, 15 and 20 A. Other Python scripts, Octave and R were used
to break down the results.

Is the sequence-profile technique powerful enough to distinguish helices from
sheets? Fig. 1.6(A) below indicates that it is; the distinct clouds of points for
all but the most heavily connected motif strongly hint that the two “families”
of structure can be separated by their motif statistics.

Several attributes of the secondary-structure networks are worth discussion.
The first datum to note is that the degree profiles (averaged over all graphs) cal-
culated at each of the three thresholds are roughly Poissonian in comportment,
as shown in Fig. 1.3. This correlates well with the results of Li et al.[11], in
which the authors study a set of 424 protein chains at the individual amino-acid
level, treating each residue as a node and linking nodes whose C, atoms are
closer than 8 A.

Second, as was also seen in [11], the clustering coefficients for the protein-
structure networks are much larger than those for Erdés-Rényi (ER) graphs of
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Figure 1.3: Degree profiles fit with Gaussians.
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Figure 1.4: On the left, clustering coefficients for the protein-structure networks
compared to those for ER graphs of the same size and average connectivity. The
regression line is y = 0.68(£0.01) 4+ 0.18(£0.02)z, with » = 0.4. On the right, C'(k) for
individual vertices plotted as a function of vertex degree, averaged over all proteins.

the same size and average degree. Looking more closely, we find that although
C for the real proteins is greater than the ER prediction, the two are not un-
related: knowing only the ER value of C (that is, N and (k)), one can linearly
approximate the true value. Fig. 1.4 displays the correlation. This was not stud-
ied in [11]’s residue-level analysis. Third, we find that the clustering coefficient
for vertices having the same k, when averaged over all proteins, falls off with
k. SF researchers typically see a decay C' oc k! as evidence that the graph is
hierarchial. Note that increasing the threshold from 10 A turns the decay more
and more linear, obscuring as one might expect the signatures of organization.
Next, we turn to the motif-statistical properties of these protein structures.
Fig. 1.5 shows the histograms for the normalized D-scores of the six subgraphs
under investigation. The general pattern seen in [13]’s three proteins is borne
out: motifs 3, 5 and 6 appear more often in the real proteins than they do in the
randomized ensembles. The blue dots indicate the average results from a set of
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100 randomly-generated graphs with p and C' typical for the protein networks;
their agreement is generally better than the analytic p-and-C' model. Note that
the plots in Fig. 1.5 show this particular sequence profile becoming more clearly
evident as N increases.

We ask, naturally, if the networks’ sequence profiles show any variation “on
top of” the values we expect on geometrical grounds. In Fig. 1.6(B), we plot
the normalized D-scores for each motif against that calculated with the model
in §1.3. In each case, the observed D; are positively correlated with the spatial-
graph expectations, with predictive ability comparable to the generated networks
discussed above. The geometrical model is, overall, good at explaining the motif
abundances in protein networks.

1.5 Conclusions and Acknowledgments

The motif-statistic properties of 833 protein domains, drawn from the
PDB_SELECT representative list, were investigated and found to follow the expec-
tations for random graphs grown in space. The motifs found to be overabundant
with respect to chance (that is, with positive D;) are the same ones identified in
[13]; in fact, though they do not give quantitative specifics, the authors of [11]
report seeing the same sequence profile in the protein-structure networks they
made at the residue level. This provides a pleasing consistency and suggests that
the effects of “coarse-graining” merit further theoretical exploration. Random
spatial graphs are a reasonable starting point for later graph-theoretic studies
of protein structure.

I would like to thank Leonid Mirny of the Harvard-MIT Divison of Health
Sciences and Technology for introducing this problem to me. Eric Downes pro-
vided suggestions during the investigation and the article preparation; at ICCS
2006, Franziska Matthdus suggested the analysis which became Fig. 1.6(A).

1.6 Appendix: Spatial Scale-Free Graphs and
Entropy

Suppose we have a node placed at z. With what probability will it have a given
number k of neighbors? This is just the probability to find k£ nodes within the
volume near x. Introduce a cutoff function x(z,y) which specifies the region in
which nodes are sufficiently close to be connected; the distance dependence of x
may be a step function, indicating a hard-sphere cutoff, or it might be a softer
relation like a Gaussian. The probability that a second node is placed within
the acceptance region of a node at x is

o(x) = / dy x(z,)p(y). (1.6)

(This reduces to Eq. (4) of [6] in the hard-sphere case.) Analytic results are
easiest to derive in the limit that NV — oo. To keep the results of interest
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Figure 1.5: On the left, summary histogram of D-scores for the six 4-motifs under
study. On the right, D-scores plotted against the number of nodes for the protein
networks (computed at a 10-A threshold).

finite, we must simultaneously take the limit R — 0 (or shrink the correspond-
ing scale parameter in y, whatever it may be). We wish to have the product
N [ dxdy x(x,y) tend to a finite constant, which following the earlier paper we
term «. In this event, the expected number of nodes found within the region
defined by x remains finite and tends to ap(z).

When we take the “thermodynamic limit”, we can simplify our integrals and
average over space to obtain the result in [6],

k
P(k;a) = % /dz P (z)e=or@), (1.7)

In the “thermodynamic limit”, y tends to a delta function and the clustering
coefficient Eq. (1.5) becomes

C= ag/dxpg(:n). (1.8)

The authors of [6] demonstrate that a random spatial graph produced from
a p(z) satisfying certain properties can be “scale-free”. Here, “cumulative ad-
vantage” or “preferential attachment” is only an artifact of location: nodes near
a peak of p(x) will tend to be more highly connected since they are likely to
have more neighbors, but this same region is also the most likely place for new
vertices to appear. (The rich get richer because of where they live, not who they
know!) They define an SF graph to be one in which the moments (k") of the
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Figure 1.6: D-scores for protein structure networks compared to the predictions of
the random spatial graph model, using p and C for each graph to compute an expected
{D;}. (A) Networks computed at AA-residue level; a-helices in red, S-sheets in green.
(B) Networks computed at secondary-structure resolution. Values of the correlation
coefficient » = 0.24, 0.43, 0.38, 0.46, 0.78 and 0.55.

degree distribution diverge for all v greater than some vy.y; it is easy to see
how this relates to a power-law decay at large k. Applying textbook knowledge
of combinatorics to Eq. (1.7), they derive the following expression for (k) in

terms of a:
v

By =3 S,(]")a’"/dx P (). (1.9)

m=0

Here, S,(,m) denotes the Stirling numbers of the second kind, which count the
number of ways to partition a pile of v elements into m non-empty boxes. The
integral in Eq. (1.9) measures the information content of p and is closely related
to the Rényi entropy[10], by

R, =

log/dqu(:z:). (1.10)
l—q
If one knows the Rényi entropies for values of ¢ > 1, one can find the Shannon
entropy by extrapolating the (¢, Rq) curve down to ¢ = 1. According to the
definition in [6], then, a graph is SF if the Rényi entropies diverge for all ¢ >
Vmax + 1.

An interesting parallel exists between this model of random spatial graphs
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and a method developed to estimate the entropy of high-energy particle col-
lisions. This techinque originated with the work of Shang-Keng Ma[12], who
considered the problem of how one could compute an entropy during a Monte
Carlo simulation. For the moment, consider a system prepared at a fixed energy
£. The entropy of this system is given by the phase-space volume through which
the system’s trajectory passes. Ma proposed sampling the system at a number of
points during its evolution and counting the “coincidences”, that is, the number
of times two sample points fall within the same bin. Ma indicates that, for the
fixed-energy case, the entropy is given by the simple relation

S = kplog(volume) = —kplog Co (fixed &). (1.11)

Bialas and Czyz[2] provide a generalization to the “canonical” case of non-fixed
energy; their phenomena of interest are multi-particle interactions at high ener-
gies, including dense hadronic matter and quark-gluon plasmas. The fundamen-
tal notion is to correct Eq. (1.11) by including higher-order coincidences, three
or more configurations landing within the same sample bin.

In this approach, one counts the number of sample points included within
small phase-space regions, while in studying spatial graphs, one connects nodes
which are separated by small distances. A “coincidence” is not dissimilar to
a connected subgraph. The parallel is clear enough that it is not surprising
Bialas and Czyz derive a formula for the overall entropy in terms of the Rényi
entropies.?

We can find the probability of a v-fold coincidence from the distribution
function p: calculate the probability of observing v vertices in a volume V and
then integrate over all choices of V. Using the cutoff function x introduced

earlier,
Co= [ay] [tttz (112)

In the “thermodynamic” limit, x tends to a delta function, and C, becomes
C, = a”/dy pr(y) = a” (p"t). (1.13)

Note that C3 is just the clustering coefficient of Eq. (1.8).
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