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1. Introduction 
1. 1 Ecological Risk Assessment 

The field of Ecological Risk Assessment (ERA) has been under development since 
the 1970s. Early ERA borrowed basic concepts from human health risk assessment 
(HRA) methodology [NAS 1983]. However, because of the nature of an ecosystem, 
there is a fundamental difference between HRA and ERA. In an HRA, the only 
receptor is a single human being and the concerned endpoints are always associated 
with human health issues, such as the risk of cancer. In ERA, however, entire 
populations, communities and ecosystems are at risk, and ERA must rigorously assess 
these more complex and larger scaled concerns. Many investigators have attempted to 
develop a new paradigm for ERA that can deal with this intrinsic distinction. 
Currently, a six-step framework is now widely used by the U.S. EPA and its 
contractors. This new paradigm is characterized by:  (1) receptor identification, (2) 
hazard identification, (3) endpoint identification, (4) exposure assessment, (5) dose-
response assessment and (6) risk characterization [Lipton et al. 1993, Suter 1993]. 
The six-step framework identifies receptors at risk, possible hazards related to certain 
receptors, and chooses appropriate assessment and measurement endpoints [Suter 
1990]. While the additional receptor and endpoint identifications improve on the 



traditional framework, single-species laboratory toxicity tests typically estimate 
ecological responses simply by predicting an environmental concentration associated 
with a certain stressor divided by the no-observed effect concentration (NOEC) for 
that stressor. This “Hazard Quotient” (HQ) approach ignores interactions between 
species that are critical to the functioning of communities and ecosystems. 

1.2 Shortcomings and Challenges of Current Ecological Risk Assessment 

As noted above, the major shortcoming of any ERA is that it ignores most, if not 
much, of ecology. Ecology focuses on relationships among species and interactions 
among species and the environments they live in. A well-developed ERA should 
focus on the structure (e.g., food-web structure) and function (e.g. biomass production 
or decomposition) of communities and ecosystems [Burger and Gochfeld 1992]. 
However, due to the ecosystem complexity and limited information, ERA in practice 
typically focuses on toxicity at smaller scales of biological organization, such as 
physiological mechanisms of toxicity and the responses of discrete endpoints in a 
single species to toxicant exposure [Preston 2002]. This approach to ERA employs a 
linear, reductionist and determinist paradigm that considers risks to each species to be 
independent of one another and determined by “causal” relationships inferred between 
input and output, such as dose and response [Kastenberg 2002]. Another major 
shortcoming is the absence of predictive tests [Holdway 1997] stemming from 
simplistic methods employed in the ERA. One prevalent method relies on single-
species acute and chronic toxicity test data obtained in the laboratory to predict 
population impacts of environmental stressors in the field. However, such predictions 
are not field tested. Also, little if any effort is expended on understanding how 
estimates of toxicity vary among different environmental contexts. Prediction of long-
term population-level effects in the field by applying data from short-term laboratory 
experiments may be particularly problematic due to the large discrepancy between the 
spatiotemporal scales of the experiments and the predictions they generate [Martinez 
and Dunne 1998]. Ecotoxicologists have been facing the challenge and working on 
developing a more holistic approach to ERA. Both the excedence profile (EP) 
[Solomon and Takacs, 2001] and the potentially affected fraction (PAF) methods 
illustrate a relationship between the proportion of species affected and the likelihood 
that their response concentrations to certain toxicant will be exceeded. The strength of 
the PAF method is that it considers multiple-species, instead of single-species in an 
ecosystem. However, species interactions, especially those that depend on species 
exposed to higher than NOEC levels, are not addressed well. Some mesocosm studies 
have estimated effects of toxicants on small-scale ecosystems. These mesocosm 
studies can observe both direct and indirect effects on multiple species and inform 
ERAs beyond information derived from laboratory single-special toxicity data. 
However, the mesocosm studies are almost always conducted after toxicant releases 
and are applied to specific species and areas, such as lakes.  This limits more general 
understanding of ecological risks to wide varieties of ecosystems and species.  

We propose a novel and more holistic in silico complement to ERAs that 
simulates the structure and dynamics of complex ecological networks to generally 
estimate and predict the risk under environmental stressors, such as global warming to 



entire communities including species’ extinction risks. So far, such holistic effects of 
global warming that account for species’ interactions have been poorly studied.  In 
this paper, our main objective is to examine the persistence of community structure 
and species under a warmed climate and to provide a more synthetic, integrated, and 
holistic model to help decision makers and the public learn more about ecological 
risks associated with environmental stressors. 

 

2. Approach 

2.1 Food-web and Trophic Dynamics Models 
Our in silico approach combines models of food-web structure [Williams and 

Martinez 2000] and trophic predator-prey dynamics [Yodzis and Innes 1992] with 
competitive consumption of multiple limiting abiotic resources by producer species 
[Tilman 1982, Huisman and Weissing 1999].  A detailed description of the synthetic 
model is given in Brose et al. (in press).  Here, we briefly describe the model’s basic 
components including the “niche model” of network structure and the bioenergetic 
model of feeding and consumer growth dynamics.   

The network structure of the food webs are constructed by the stochastic “niche 
model” that uses species richness (S) and directed connectance (C, number of directed 
feeding links divided by S2) as input parameters. The niche model hypothesizes that 
food-web structure is a result of a particular arrangement of a one-dimensional 
community niche space where all species and their diets are located as described in 
Figure 1. 

 
 

 
 
 
 
Figure 1. Niche model diagram. S (trophic species richness, here S = 7, shown by inverted 

triangles) and C (connectance) are set at the observed values for the empirical web being 
modeled.  The niche model assigns each of S species a uniformly random “niche value” 0 � ni � 
1 that establishes each species’ location in the community niche.  Each species is then assigned 
a beta distributed feeding range 0 � ri � 1 with a mean equal to connectance (C=L/S2).  Each ith 
species consumes all species within its ri which is placed on the niche by choosing a uniformly 
random center (ci) of the range between ri/2 and ni.  The species with the lowest ni is assigned ri 
=0 so that each “niche web” has at least one basal species.  All other species that happen to eat 
no other species are also basal species.  

 
Following previous works [McCann and Yodzis 1994, McCann and Hastings 

1997, McCann et al. 1998, Brose et al. 2003], we use a bioenergetic consumer-
resource model for the species’ consumptive interactions that has been recently 
extended to n species [Williams and Martinez 2001]. The rate of change in the 
biomass, Mi of species i changes with time t is modeled as: 
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where Gi(R) describes the growth of producer species; xi is the mass-specific 
metabolic rate; yij is species i’s maximum ingestion rate of resource j per unit 
metabolic rate of species i; �ij is species i’s relative strength of consuming species j, 
which is equal to the fraction of resource j in the diet of consumer i when all i’s 
resources are equally abundant, normalized to one for consumers and zero for 
producers, and eji is the biomass conversion efficiency of species j consuming i.  We 
used a type II functional response, Fij(M) that indicates the flow of biomass from 
resource j to consumer i. 
 

2.1 Climate Change and Metabolic Rates 

In this study, we consider a single environmental stressor, temperature change due to 
a warmed climate, by focusing on the effects increased temperature on species’ 
metabolic. Earth's climate has warmed by approximately 0.5 oC over the past 100 
years [Pollack et al. 1998], and global warming is an ongoing process. The 
Intergovernmental Panel of Climate Change (IPCC) (2001) has projected the mean 
global surface air temperature to increase by 1.4 oC to 5.8 oC from 1990 by 2100, with 
the magnitude of the increase varying both spatially and temporally. Coastal ocean 
temperature increases are expected to be slightly lower than the IPCC projected 
increases for land, but are still expected to rise measurably. This increase in 
temperature causes increases in species’ metabolic rates [Gillooly et al. 2001]. Given 
that these metabolic rates define the species’ expenditure of energy on maintaining 
themselves – their cost of life – we hypothesize that increased metabolic rates might 
severely impact their extinction risks.  

Gillooly et al. (2001) proposed that species’ metabolic rates depend on their 
body-sizes and temperatures in a highly predictable manner. The metabolic rates, B, 
scale with body mass M as B ∝ M 3/4 so that their mass specific metabolic rate equals 
B/M ∝ M -1/4. Temperature governs metabolism through its effects on rates of 
biochemical reactions. Reaction kinetics vary with temperature according to the 
Boltzmann’s factor e-E/kT, where T is the absolute temperature (in degrees K), E is the 
overall activation energy, and k is Boltzmann’s constant. When considering both 
species’ body mass and temperature dependence of the whole organism, the metabolic 
rate can be derived by 
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In Equation (2), B0 varies according among taxonomic groups and metabolic-state-
dependent normalization constant, and M is the body mass of an individual [West et al. 
1997, Gillooly et al. 2001]. T is the body temperature of organisms, at which different 
biochemical reactions occur. For ectotherm species – invertebrates and ectotherm 
vertebrates, T is nearly equal to the environmental temperature [Savage et al. 2004]. 
Equation (1) fits metabolic rates of microbes, ectotherms, endotherms, and plants in 
temperatures ranging from 0° to 40°C [Gillooly et al. 2001]. When the temperature T 
changes from T1 to T2, metabolic rate B will change from B1 to B2, and the 
proportional change in metabolic rates, ∆B, can be derived by 
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We assume that body mass is the same before and after the temperature change.  ∆B 
depends on ∆T = T1-T2, and the initial temperature T1. Therefore, if T1 and ∆T are 
known, equation (3) can be used to predict metabolic rates.   
 

2.2 An Example for Community Risk Assessment  

We simulate the response of in silico species and complex ecological communities to 
global warming and the subsequent increase of the species’ metabolic rates as an 
example in order to demonstrate the framework for community risk assessment we 
proposed in the previous section. Numerical integration of 30-species invertebrate 
food webs including eight producer species and 135 trophic interactions (connectance 
= 0.15) over 2000 time steps yields long-term predictions on community-level effects. 
The model parameterization assumes invertebrate species, predators that are on 
average ten times larger than their prey, and producer species with a relative 
metabolic rate of 0.2 in model cases without global warming effects.  The sensitivity 
of the simulation results to these assumptions will be studied elsewhere.  In particular, 
we address changes in persistence, i.e. extinction risk, for species in general and for 
producer species (species without prey), consumer species (species with prey) and 
omnivores (species feeding on multiple trophic levels). Furthermore, we study 
changes in food-web structure in terms of connectance (links/species2). To study the 
effects of global warming, we compare numerical integration results averaged over 50 
replications with and without increases in metabolic rates that are subsequently 
indicated by the subscripts ‘warm’ and ‘const’, respectively. For instance, 
proportional change in species extinction risks, ∆R due to global warming are 
calculated as  
   

const
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R
R

R −=∆ 1   (4) 

  
where R is species richness. Rwarm is the species richness after a temperature increase 
and Rconst is the species richness in the benchmark case in which the global 
temperature remains constant at it currently observed values. The proportional 
chtanges in the other dependent variables are calculated similarly.  
 To help understand our model framework, we examined the model’s sensitivity 
to temperature change. Three climate change scenarios are studied: the anticipated 
“best-case scenario” minimally increases global temperature by 1.4 oC, the “average-
case scenario” increases global temperature by 3.6 oC, and the “worst-case scenario” 
increases global temperature by 5.8 oC. Based on these three scenarios and equation (4) 
with E/K = 9.15 for multicellular invertebrates [Gillooly et al. 2001], proportional 
metabolic rate changes are evaluated in Table 1. Simulations concern a thirty-species 
invertebrate food web living in an area with a 0 oC average annual temperature.  
 



Table 1. Proportional metabolic rate change for three climate change scenarios 
Temperature Increase          Proportional Metabolic Rate Change* 
1.4 oC                   0.017% 
3.6 oC          0.044% 
5.8 oC                   0.070% 
* We assume an initial temperature of 0 oC. 
 
3. Quantitative Results and Discussion 
 
The mean values of our dependent variables for the benchmark case (∆T =0) and each 
climate change scenario are given and compared in Table 2 and Table 3. For example, 
with a 5.8 oC temperature increase, 0.2 species die out after 2000 time steps due to the 
temperature increase in the invertebrate food-web. Total species richness among all 
scenarios ranges from 24.3 to 23.5 and the proportional change in species extinction 
risks due to warming (∆R) ranges from -2.36% to 1.1% under the projected global 
temperature increases of 1.4 oC to 5.8 oC, respectively. The number of links decreases , 
then increases from a baseline of 92.3 links to 94.9-88.9 links. The richness of top 
species ranges from 2.0 to 2.4 and the proportional changes in extinction risks for top 
species (∆Top) ranges from 25.2% to 11.11%. The richness of basal species remains at 
the original number, 8 despite the temperature increases of 1.4 oC to 5.8 oC. In other 
words, all producer species typically survive the climate warming.  Connectance 
varies from 0.161 to 0.162 as the temperature increases. With global temperature 
increases of 1.4 and 3.6 oC, species richness are greater than the benchmark species 
richness. In the worst temperature increase scenario, species richness drops down 
below 23.7, which indicates a proportional change in species extinction risk, 1.11%.  
 
Table 2. Output parameters from the simulations for three climate change scenarios 
Temperature  Species  Connectance        Links          Top** Basal** 
Increase  Richness  (Link/Species2)           
0.0 oC*   23.7              0.163         92.3  2.7       8  
1.4 oC           24.3                       0.161         94.9       2.0       8 
3.6 oC  23.8              0.162         91.8  2.4       8 
5.8 oC           23.5              0.161         88.9       2.2       8 
* The benchmark case, ** Top = top species richness and Basal = basal species richness. 
 
Table 3. Comparisons between three climate change scenarios and the benchmark case  
Temperature  ∆∆∆∆R*    ∆∆∆∆Top *  ∆∆∆∆Basal*   ∆∆∆∆Conn* 
Increase  (%)     (%)       (%)         (%) 
1.4 oC         -2.36            25.2        0           1.85 
3.6 oC         -0.34            11.1        0           1.21 
5.8 oC          1.10            18.5        0         1.56 
* ∆R = proportional change of species richness, ∆Top = proportional change of top species 
richness, ∆Basal = proportional change of basal species richness and ∆Conn = proportional 
change of connectance. 
  

From the above data analysis, we hypothesize that small temperature increases 
may favor the species richness. However, beyond this range, temperature increases 
can decrease biodiversity and increase species’ extinction risks. In order to understand 



better, we simulated the responses to varying the possible change of metabolic rates 
by 0.01% to 1% based to the temperature range from 0oC to 40oC used in equation (2).   
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Figure 2. Effect of metabolic rate on species richness for basal (producer) and consumer species 
with a metabolic rate change range from 0.01% to 1% after 2000 time steps 

 
Figure 2 gives the tendencies of species richness with varying the metabolic rate 
changes from 0.01% to 1%. The trend in species richness basically suggests that 
global warming presents very little if any extinction risks to consumer species due 
only to temperature effects on metabolic rates. Basal species such as plants appear 
unaffected by increases in metabolic rates while such temperature increases affect 
consumer’s abilities to persist.  

Here, we propose a generic framework for estimating and predicting community 
risks that may be extended to address many other risks such as those posed by toxics 
in the environment combined with global warming. We have examined how a warmed 
climate in terms of metabolism change, affects biodiversity and species’ extinction 
risks. Surprisingly, a warmed climate in terms of metabolism change makes minor 
effects on biodiversity and species’ extinction risks, which is not as what we expected. 
We will explore how different mechanisms, such as assimilation efficiency will affect 
different ecosystems due to climate change and other stressors. In this paper, we have 
more simply explored how an invertebrate ecosystem may respond to a warmed 
climate. However, this is more a description and exploration of our methods rather 
than a specific prediction of future events. In order to make such predictions, further 
research will examine more specific food webs, such as invertebrate, ectotherm 
vertebrate and endothermic vertebrate food webs parameterized for more specific 
habitats including terrestrial and marine systems in tropical, temperate, and polar 
climates. Results from these future studies may help scientists to understand, and 
society to decide, which geographic areas and which habitats and species are most at 
risk and in need of the most urgent attention and action. Temporal predictions of 
ecosystem response to external perturbations should be very valuable for predicting and 
understanding ecological risks associated with climate change and other anthropogenic 
effects on ecosystems. 
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