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Near an orbit of interest in a dynamical system, it is typical to ask which variables
dominate its structure at what times. What are its principal local degrees of freedom?
How large is its basin of attraction? What bifurcations are nearby?

We describe a hybrid numerical and analytical technique that aids the identifica-
tion of structure in orbits of a class of high-dimensional systems of ordinary differential
equations. This ‘dominant-scale’ technique incorporates information about the sep-
arations in scale between variables, both in time and in a quantity we derive that
measures a variable’s dominance strength on an equation in which it appears. As such,
the technique involves application of standard multiple-scale asymptotic analysis.

We demonstrate our technique using a new software tool, known as Dssrt, on a
limit cycle of a regularly firing Hodgkin-Huxley neuron.

1.1 Introduction

Systems of ordinary differential equations (ODEs) arise commonly in the natural
sciences as models of physical processes. Many of these models involve nonlinear
dynamics [8], and exhibit complex behavior in a variety of ways. At the heart of
much complex behavior lies the dynamics of variables working at different scales
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of time. Furthermore, the form of interactions between the variables are often
such that some do not have a significant effect over certain parts of the phase
space. A common example is ‘pulsatile’ coupling [21], when a variable’s input
to another’s equation only has an effect on the dynamics while the ‘pulse’ is
occurring. This exemplifies multiple scales of influence in interactions between
ODEs.

In many models studied using multiple-scale analysis it is common to find an
a priori assumption of one or more explicit small parameters (e.g. the van der
Pol [25], FitzHugh-Nagumo [7], Morris-LeCar [22] and Wilson-Cowan [27] os-
cillators, and weakly-coupled oscillators in general [10][17][21]). Typically these
systems are amenable to a standard use of geometrical singular perturbation the-
ory [4][11] and invariant manifold theory [6][26]. However, in other popular sys-
tems of equations, such as the Hodgkin-Huxley model of nerve action potential
generation [9][14], we may instead find more than two time- or influence-scales
(sometimes with a lack of strong separation), which may even swap their order
of magnitudes during a typical oscillation [24]. Also, no explicit small parameter
exists in the HH equations.

Techniques of dimension reduction exist in control theory and in dynamical
systems modeling from the data analysis of time-series, and reduction methods
for large chemical systems that focus on multiple scales in time with explicit
small parameters [3][19]. Several ad hoc procedures exist in the modeling of
neurophysiological rhythms [5][12], which is one of the primary motivations for
this study. There is also a large body of literature focusing on the derivation of
reduced neural models [1][7][15][16][18][20][27]. Here, we assume that an appro-
priate model for a particular analysis has already been decided.

We describe a ‘dominant-scale’ method of analysis for higher-dimensional
models in which the separation of scales change through time, and where we
take advantage of a measure of the influence that variables have on each other.
We demonstrate our method’s utility for a Hodgkin-Huxley type model of a
single-compartment neuron that fires rhythmically (hereon abbreviated ‘HH’).
Our model is well known but has sufficient structure for us to briefly present
the dominant-scale method and its analysis. As this model has been a popular
subject of asymptotic analysis (e.g. [7][24]), this aids validation of—and intuition
for—our method. Of course, our intention is to apply our methods to high-
dimensional coupled systems, where intuition is less readily available and less
reliable.Work in progress focuses on specific applications of this nature [23], and
provides more detail and justification of the method and our derivations [2]. All
calculations and graphics in this article originated from Dssrt (the Dominant-
Scale System Reduction Tool), 1 a new software tool developed for use with
Mathworks’ Matlab.

1The Dssrt software, with usage and technical documentation, full source code, and ex-
amples, is available at http://math.bu.edu/people/rclewley/DSSRT.html.
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1.2 The Hodgkin-Huxley model

In order to efficiently introduce our method, it is useful to write the HH equations
in unfamiliar notation. There is a current-balance equation for the membrane
potential V . Associated equations for the dimensionless activation variables
gx ∈ [0, 1], where x = m, h, and n, model the ‘spiking’ excitability,

τV

({gx}x∈Γ1

)dV

dt
= V∞

({gx}x∈Γ1∪Γ2

) − V

= ḡmg 3
m (Vm − V ) + ḡng 4

n (Vn − V )
+ ḡLgL (VL − V ) + ḡIgI (1.1)

τx(V )
dgx

dt
= x∞(V ) − gx, x = m, h, n, (1.2)

where the index sets are Γ1 = {m, n, L}, and Γ2 = {I}, and gh is considered an
auxiliary variable (see below). The voltage equation has the same form as for
the activation variables, where we have defined

τV = C/
(
ḡmg 3

m + ḡng 4
n + ḡL

)

V∞ = τV

(
ḡmg 3

mVm + ḡng 4
n Vn + ḡLVL + ḡIgI

)
,

and where we use ḡn = 80, ḡL = 0.1, C = 1, Vm = 50, Vn = −100, VL = −67,
ḡI = 0.32. For the ‘leak’ and ‘drive current’ inputs we have formally included
the pseudo-gating (passive) variables gL(t) ≡ 1 and gI(t) ≡ 1, respectively. For
the sodium activation current there are two gating variables, gm and gh, involved
in forming the conductance. For our purposes (and without loss of generality) we
treat gm as the ‘primary’ variable, and have defined the maximal conductance
ḡm(t) = 100 gh(t). τx is a time-scale, and x∞ is the ‘asymptotic’ value for x. We
define τx = αx + βx and x∞ = αx

αx+βx
in (1.2), using the forward and backward

activation rates

αm(V ) = 0.32 (V + 54) /
(
1 − e−(V +54)/4

)

βm(V ) = 0.28 (V + 27) /
(
e(V +27)/5−1

)

αh(V ) = 0.128 e−(50+V )/18

βh(V ) = 4.0 /
(
1 + e−(V +27)/5

)

αn(V ) = 0.032 (V + 52) /
(
1 − e−(V +52)/5

)

βn(V ) = 0.5 e−(57+V )/40.

The activation functions and parameters are typical for modeling mammalian
cortical cells.

All the additive terms in the right hand side of the V equation (1.1) we
refer to as inputs, because each term has a distinct physiological interpretation.
There are two types of input: (a) additive ‘current’ terms, independent of V ,
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written ḡxg qx
x (t) (index set Γ1); (b) V -dependent ‘conductance’ terms of the

form ḡxg qx
x (t) (Vx − V ) (set Γ2). Here, ḡx is the maximal value of the input,

gx(t) is its time-course, and qx is a positive integer.

1.3 Computing dominant inputs

We define the dominance strength of input term x to the V equation to be

Ψx (t) = gx (t)
∣∣∣∣
∂V∞
∂gx

(t)
∣∣∣∣ , x ∈ Γ1 ∪ Γ2. (1.3)

The factor of gx normalizes the partial derivative. Because of the conditional
linearity of the HH equations (i.e. each is linear in its own dependent variable
if the other variable values are known), this definition reduces to a form that is
computationally more practical, and which yields more insight into its meaning:

Ψx (t) =




∣∣∣ ḡxg qx
x (t)

gtot(t)

(
Vx − V∞ (t)

)∣∣∣ if x ∈ Γ1,∣∣∣ ḡxg qx
x (t)

gtot(t)

∣∣∣ if x ∈ Γ2.
(1.4)

We see that for Γ1 inputs, Ψx resembles the input term for x except that V∞
replaces V , and we have normalized by gtot ≡ 1/τV . This normalization oc-
curred automatically from taking the derivative in (1.3), and has the benefit of
allowing a fair comparison between Ψx values at times for which the effective
membrane time constant τV differs greatly. For Γ2 our definition coincides with
the associated input term (modulo the normalizing factor). By defining a scale
relative to the largest Ψx(t) value, what is considered the O(1) dominant scale
of influence is continually renormalized along an orbit.

Because there is only one input for each of the gating variable equations,
we focus only on the V equation. All Ψx(t) values associated with its inputs
are calculated along any orbit X̃(t) ⊂ R

4, where X̃ = (Ṽ , g̃m, g̃n, g̃h) defines the
coefficients of the orbit in each of the participating variables. At a sufficiently
fine time resolution, the |Γ1 ∪ Γ2| = 4 dominance strengths are ranked by size
for each sample time t. In ratio form, each ranking can be expressed by the
set of coefficients ci ∈ (0, 1] solving Ψxi = ciΨx1, where the coefficients define
the scale of the ith input relative to the strongest input x1, and {xi}i=1...4 is a
permutation of Γ1 ∪ Γ2. We do not have the convenience of an explicit small
parameter in our system, so we introduce a free parameter ε ∈ (0, 1), defining
a small scale of influence between variables (typically not close to 0). Inputs
having a scale coefficient ci > ε are called active inputs at time t, and form the
ordered index set of actives AV, ε(t). The remaining inputs are inactive at time t.
ε must be set appropriately by the user for the method to be most effective. For
instance, increasing ε forces Dssrt to be more exclusive, and produce simpler
reduced models at the expense of accuracy.
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1.4 Approximate local models

For all initial conditions, our HH system quickly approaches a limit cycle having
period T = 49.5. Our method is independent of the orbit studied, but it is
convenient to define X̃(t) to be this limit cycle hereon. The part of this cycle
near a spike is shown in Fig. 1.1 for each of the constituent variables. We view
the underlying structure of X̃(t) by recognizing a sequence of important events
in the evolving dynamics. We define an event as occurring whenever there is
a change in the set of all variables’ actives

⋃
x Ax, ε, and we partition X̃(t)

according to the times of these events. We define an epoch as the time interval
between consecutive events. For a given ε, Dssrt partitions an orbit into P (ε)
epochs, having time intervals

[
tp, tp+1

)
for p = 1, . . . , P − 1.

We use the definition of dominance strength to determine approximate local
models to study the system near X̃(t), independently of the relative time-scales
of the variables. We therefore assume an accurate knowledge of the time-courses
of the variables making up X̃(t) (e.g. from numerical simulation). Within the
pth epoch, a suitable reduced model of the system in a neighborhood of X̃(t),
for t ∈ [

tp, tp+1

)
, is given by

dV

dt
=

∑
x∈Γ1

σxḡxg qx
x (Vx − V ) +

∑
x∈Γ2

σxḡxg qx
x (1.5)

dgx

dt
=

1
τx

(x∞ − gx) , if σx = 1, (1.6)

where the switch coefficients σx(t) = 1 if x ∈ AV, ε(t) in this epoch, and zero
otherwise. (Equations are absent for the passive inputs gL and gI .) The initial
conditions are set to coincide with the corresponding entries of X̃(tp). Each
local model has an explicitly-estimated domain of validity (prescribed analyti-
cally and computed numerically), and is O(ε)-accurate with respect to the full
dynamics [2].

Using ε = 1/3 in Dssrt, we obtained a transition sequence of distinct AV, ε

sets associated with each of eight epochs. In Fig. 1.2, the set of computed epochs
are overlaid on Ṽ (t) for one period of the limit cycle, with the corresponding
V∞(t). An inset shows a close-up of these during a spike.

1.5 Reduced dynamical regimes

The sequence of local models was consolidated by Dssrt into four ‘reduced
dynamical regimes’ using an algorithm that captures some of the essential in-
tuition of matched asymptotic analysis for ODE initial-value problems. This
requires tracking the changing orders of magnitude in the time-scales of active
variables. For this we need a second free parameter, γ ∈ (0, 1), that is a time-
scale threshold for τx(t)/τV (t) (x �= V ). When this ratio is less than γ, then x is
considered ‘fast’ relative to V . Here, active variables that are ‘fast’ are slaved to
V , and their time-courses can be O(γ)-approximated by their asymptotic value
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Figure 1.1: The four constituent variables making up X̃(t), focused on a spike. g̃m(t)
is the dashed line, g̃n(t) is the dotted line, g̃h(t) is the dot-dash line, and for reference
Ṽ (t) is shown in bold, rescaled to [0, 1].
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Figure 1.2: One period in Ṽ (t), with V∞(t), and its set of epochs. V∞(t) is the dashed
line. The epoch transition events are shown as open circles. The extent of each regime
is marked below the time axis. The inset shows a close-up of the spike.

(an ‘adiabatic elimination’), thereby reducing the model’s number of dynamical
variables further. Conversely, when the ratio is greater than 1/γ the variable is
‘slow’, and we can replace it in the regime with an appropriate constant value
(determined self-consistently from looking at neighboring regimes). Here, we set
γ = 1/3. Note the different focus of our method is that only the time-scales of
the most dominantly influential (active) variables need to be considered; inactive
variables are simply ignored in the local models.
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I [115.45, 139.70) dim. = 2 III [140.65, 142.45) dim. = 1

Dynamic vars. gm[F], gh, V Dynamic vars. gn[F], V

Passive vars. gL, gI Passive vars. gL, gI

Bifurcation param. gn Bifurcation param.

II [139.70, 140.65) dim. = 2 IV [142.45, 164.95) dim. = 1

Dynamic vars. gm, gn[S], gh[S], V Dynamic vars. V

Passive vars. Passive vars. gL, gI

Bifurcation param. Bifurcation param. gm

Table 1.1: The four regimes determined by Dssrt: [F] indicates ‘fast’ variable, [S]
indicates ‘slow’. The half-open intervals mark the temporal extent of the regimes, and
the effective dynamic dimension of each reduced model is also shown.

For instance, two epochs that differ only by passive variables are put in the
same regime. The algorithm also attempts to determine which slowly changing
or potentially active variables need to be tracked in order to accurately predict a
transition into the next epoch.2 Bifurcation analysis of the regimes can be done
using these variables as quasi-static bifurcation parameters. Thus the regimes
tell a concise story of the most important interactions between variables near
orbits of interest in the full HH equations. Note that the construction of a
trajectory near to X̃(t) using these regimes does not accumulate error through
time because the HH system is strongly dissipative. Also, due to the emerging
strong separation of dominance scale during a spike, the automatically generated
regimes are not sensitive to changes in ε or γ.

The regimes calculated for the HH cell, shown in Table 1.1 and Fig. 1.2, show
that the dynamics along most of the orbit is effectively one-dimensional, and
only two-dimensional during a spike. Thus, standard graphical techniques can
be used to do bifurcation analysis [8][10]. During a spike gm, gh and gn play the
most dominant roles (regimes I and II). These two regimes exactly correspond to
those described in [24], where the phase-plane analysis of a cusp catastrophe and
saddle-node bifurcation is detailed. The regimes also demonstrate the validity
of a linear one-dimensional membrane model (e.g. the leaky integrate-and-fire
model [18][13]) for the non-refractory part of the non-spiking dynamics, when
only gL and gI are active inputs to the equation for V .

1.6 Summary and future work

With only minimal initial specification of the ODE system and the limit cycle
to Dssrt, and selection of two free parameters, the software tool has resolved
the important dynamical processes underlying an orbit of a HH model neuron—
a 4-dimensional, stiff, and nonlinear ODE system involving pulsatile coupling
between the variables, and changing time-scale relationships. It has generated
a set of reduced dynamical regimes of low dimension within which bifurcation

2See online documentation and [2] for full details of the algorithms involved.
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and perturbation analyses can be performed. In this simple example, the same
regimes can be deduced by the application of standard multiple-scale analysis,
using readily-available intuition (partly shown in [24]). This helps to validate
our program’s encoding of the intuition and analytical steps involved. Further-
more, major advantages of our method are the quantitative estimate of the
domain of validity for each regime (both in time and with respect to perturba-
tions from the limit cycle, without using numerical ‘shooting’ methods) [2], and
the near-autonomy with which Dssrt establishes the regimes without needing
formal small parameters. Dssrt can also deal with much larger and less famil-
iar dynamical systems, where formal asymptotic analysis would be difficult by
hand [23].

In future work we will use Dssrt to investigate the dynamical structure un-
derlying the well-known phase-response curves for coupled oscillators, and add
tools for automatic bifurcation analysis. We also hope to extend these methods
to help more rigorously define and study concepts such as ‘emergent structure’
and ‘self-organized complexity’ in large dynamical systems. Certainly, a quanti-
tative and computer-aided approach to formally reducing high-dimensional dy-
namical systems will be an important step towards achieving these goals.
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