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1.  Introduction 
 
The motto of the Complexity Study Center is “If it isn’t complex, it isn’t interesting.”  
There has been a great deal of ferment in ‘Complexity Science’ in recent years, as 
chronicled in the proceedings of the International Conference on Complex Systems [Bar-
Yam & Minai 2003, Bar-Yam 2000] and those of the Santa Fe Institute [Nadel & Stein 
1995, Cowan 1994].  We have been primarily focused on developing metrics of complexity 
relevant to chemistry, especially synthetic chemistry [Bertz 2003a-c].  Our approach is to 
abstract a system, e.g., a molecule or a plan for its synthesis, as a graph and then to use the 
tools of graph theory to characterize the complexity and diversity of the system. 
 
For the finer points of graph theory, we recommend standard texts [Gibbons 1991, Harary 
1969] and limit our introduction to the basic definitions needed to appreciate the results.  A 
graph G consists of a finite set V(G) of vertices (or points) together with a set E(G) of 
edges (or lines), which are unordered pairs of distinct vertices of V(G).  Mathematicians 
generally use the vertex-edge convention; however, following Harary [1969], authors in 
other fields usually use the point-line system, which we adopt here.  A line x = p1p2 = p2p1 
in G joins points p1 and p2, which are adjacent points.  Two lines that share a point are 
adjacent lines, e.g., p1p2 and p2p3.  Point p and line x are incident to each other.  In a 
multigraph more than one line joins at least one pair of points. 
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When the lines of a graph are directed, i.e., ordered pairs of distinct points, they are called 
arcs, and the graph is called a digraph (directed graph) D.  Thus, pipj is the arc from point 
pi, the tail, to point pj, the head.  Multidigraphs allow multiple arcs, e.g., two arcs from p1 
to p2.  The in-degree of pi, in(pi), is the number of arcs terminating at pi, and the out-degree 
of pi, out(pi), is the number of arcs originating from it.  Since each arc has one head and one 
tail, for any digraph ∑ i in(pi) = ∑ i out(pi).  The degree di of point pi in a graph or digraph is 
the number of lines incident to it, and in a digraph di = in(pi) + out(pi). 
 
A walk of length n – 1 is a sequence of points p1, p2, p3, …, pn that are joined by arcs p1p2, 
p2p3, …, pn – 1pn.  In a path Pn on n points, each point and hence each line is distinct.  In a 
pseudopath one or more of the arcs are oriented in the opposite direction from the rest.  
Semipaths are comprised of paths and pseudopaths.  In a connected (di)graph all pairs of 
points are the endpoints of some (semi)path.  A cycle Cn, also called an n-cycle or n-ring, is 
a sequence of arcs p1p2, p2p3, …, pn – 1pn, pnp1 such that all n points are distinct.  We include 
p1p2p1 as a 2-cycle.  A tree is a connected graph without cycles. 
 
Two graphs G and H are isomorphic, G ≅ H, if and only if there exists a one-to-one 
correspondence between their point sets that preserves adjacency.  An invariant of graph G 
is a number I(G) associated with G that has the same value for any graph H isomorphic to 
G.  For example, the number of points, the number of lines and the number of pairs of 
adjacent lines are graph invariants.  A subgraph S of graph G is a graph that has all its 
points in V(G) and lines in E(G).  We include G itself and also P1, the trivial path on 1 
point, in the set of all possible subgraphs of G.  A spanning subgraph is a subgraph 
containing all the points of G.  A spanning subgraph that is also a tree is a spanning tree. 
 
A molecule can be abstracted as a molecular graph M by representing its atoms as points 
and the covalent bonds between them as lines.  Chemical graph theory ordinarily uses 
hydrogen-suppressed graphs [Trinajstić 1992], which do not include any hydrogen atoms 
or the bonds to them.  Multiple bonds are represented by multiple lines and lone pairs of 
electrons by loops.  (A loop is a line that joins a point to itself.)  Different atoms can be 
indicated by coloring the points, e.g., black for carbon (●) and white for oxygen (○).  A 
synthesis plan can be represented by a synthesis graph [Hendrickson 1977], in which the 
points stand for molecules and the lines for reactions converting one molecule into another. 
 
We have introduced two methods to measure the complexity of (molecular) graphs.  The 
first is the ‘all possible subgraphs method,’ where NS is the number of kinds of subgraphs, 
i.e., the number of non-isomorphic ones, and NT is the total number of subgraphs, 
isomorphic and non-isomorphic [Bertz & Sommer 1997, Bertz & Herndon 1986].  Only 
connected subgraphs are considered.  The second is the ‘edge cover method’ [Bertz 2001, 
Bertz & Zamfirescu 2000], which is not discussed here.  Prior to our work on the 
complexity of graphs, seminal contributions to this area were made by Gordon and 
Kennedy [1973], Minoli [1975], and Bonchev and Trinajstić [1977].  Rücker and Rücker 
[2001a,b] have contemporaneously made important contributions based on walk counts. 
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2.  Results and Discussion 
 
The problem with the methods alluded to above is their vulnerability to the ‘combinatorial 
explosion,’ e.g., the number of subgraphs increases exponentially with the number of lines.  
In order to simplify the problem, we have investigated subsets of all possible subgraphs 
such as the number of kinds of trees TS and the total number of trees TT [Bertz 2003c, Bertz 
& Wright 1998].  The number of spanning trees has been proposed as a measure of 
complexity [Gutman 1983]; however, it is not sensitive to branching [Nikolić 2003], an 
important complexity factor for some classes of problems.  A particularly simple tree is the 
path on three points, P3, which greatly reduces computational complexity.  Gordon and 
Kennedy [1973] used the number of subgraphs isomorphic to P3 as an index of branching, 
which is an essential aspect of molecular complexity.  In chemical terms it is the number of 
ways to ‘cut’ the propane skeleton out of a molecule or the number of paths of length 2 in 
the molecular graph. 
 
In order to extend this approach to digraphs, we must consider the possible kinds of ‘paths 
of length 2.’  There are two types of directed paths of length 2, viz. those in digraphs A and 
D (Figure 1).  In fact, D contains two such paths, p1p2p1 and p2p1p2.  In addition there are 
two pseudopaths, B and C.  The center point in A has in(p2) = out(p2) = 1 and is a carrier, 
as are both points in D.  A point is a sink when all arcs are directed towards it, e.g., the 
center point in B, where out(p2) = 0.  A point is a source when all arcs are directed away 
from it, e.g., the center point in C, where in(p2) = 0.  On the other hand, endpoints p1 and p3 
in B are sources, and in C they are sinks. 
 
It appears that the number of semipaths of length 2 is the simplest index of complexity that 
responds in a positive way to all the factors that increase the complexity of a 
(multi)digraph:  the number of points n, the number of arcs m, the number of multiple arcs 
mk, the number of rings (cycles) r, and the degree of branching di at point pi.  For all trees 
on n points, ∑di = 2m is constant, as m = n – 1.  Therefore, to a first approximation 
branching is determined by the highest degree in a graph or digraph.  In cases where the 
highest degree is the same, the second highest may be determining.  The cyclicity C is the 
ratio of the number of rings r to the number of points n, C = r / n.  Various indices weight 
the complexity factors differently, and it is useful to have a range of them when 
confronting practical problems in order to be able to choose the index that gives the best fit. 
 
 

    A
(1,0,0)

    B
(0,1,0)

    C
(0,0,1)

    D
(2,0,0)

1

2

3 1

2

3 1

2

3 1 2

 
 
Figure 1.  Possible connected digraphs with two arcs, and their triples (a, b, c).
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For simple examples such as the digraphs in Figure 2 (vide infra), one can easily count 
each of the subgraphs A-D (Figure 1) and calculate the triple (a, b, c), where a is the 
number of subgraphs isomorphic to A plus 2× the number isomorphic to D, b is the number 
isomorphic to B, and c is the number isomorphic to C.  Below we give methods for 
computing (a, b, c), based on the adjacency matrix. 
 
The adjacency matrix A of a digraph D on n points with point set V(D) and arc set E(D) is 
the n × n matrix A(V, E), where element A(i, j) = 1 if arc (i, j) ∈ E(D) and A(i, j) = 0 
otherwise.  The transpose AT of matrix A is obtained by interchanging its rows and 
columns.  The entries of Ak(i, j) are the number of directed paths from pi to pj that contain k 
arcs.  Thus, we can infer that A2(i, j) contains the number of directed paths of length 2 from 
pi to pj.  Since i = j is permitted, the paths in D are counted as well as those in A.  
Furthermore, AAT(i, j) represents the number of pseudopaths isomorphic to B, where pi and 
pj are sources, and ATA(i, j) represents the number of pseudopaths isomorphic to C, where 
they are sinks.  Then, for digraph D we obtain the triple (a, b, c) by computing a as the sum 
of all entries in A2, b as the sum of all entries in AAT, and c as the sum of all entries in ATA. 
 
Alternatively, to reduce the computational time imposed by matrix (i.e., non-Boolean) 
multiplication, we note that ‘local’ information is sufficient to compute (a, b, c).  The in-
degree and out-degree information for every point p of digraph D with point set V(D) can 
be extracted efficiently from its adjacency matrix or equivalently from an adjacency list 
[Gibbons 1991].  Then, a = ∑ p∈V (in(p) × out(p)), b = ∑ p∈V C(in(p), 2) and c = ∑ p∈V 
C(out(p), 2), where C(k, 2) represents combinations of k objects taken two at a time (k 
choose 2) and the order of objects does not matter. 
 
We have enumerated the 199 connected digraphs on four points with from zero to six 2-
cycles, and they are collected in Appendices 1-5.  If we neglect the directions of the arcs, 
then there are 53 non-isomorphic graphs underlying them.  We refer to the digraphs with 
the same underlying graph as a family of digraphs.  Thus, we have 53 such families with 
from one to sixteen members, and Figure 2 shows one example from each family (same 
numbering as in the appendices).  Figure 3 shows all ten members of one of the families. 
 
For complexity considerations it is useful to compute the invariant h = a + b + c, the total 
number of semipaths (i.e., paths and pseudopaths) of length 2, which is also given by 
equation 1, where hi is the contribution of point pi to h.  The directionality of the arcs in a 
digraph is lost upon computing h, which is the same for the underlying graph.  Therefore, h 
characterizes the entire family of digraphs with a given underlying graph and is, in fact, 
precisely the Gordon-Kennedy [1973] index. 
 

h = ∑ i hi = ½ ∑ i di (di − 1)    (1) 
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    1 
(2,0,0)

    5 
(2,1,0)

   17 
(4,0,0)

   21 
(6,1,1)

   31 
(8,2,2)

   35 
(4,1,0)

   45 
(6,1,2)

   42 
(5,1,1)

   55 
(6,2,2)

   51 
(7,1,1)

   39 
(4,1,1)

   63 
(6,1,1)

   67 
(9,2,2)

     83 
(10,2,2)

     90 
(11,4,3)

  100 
(6,1,1)

  101 
(7,2,1)

  103 
(8,3,1)

  110 
(9,2,2)

   117
(10,3,2)

   113 
(10,2,3)

   121 
(10,2,4)

  105 
(8,2,2)

   123 
(12,3,3)

   127 
(12,4,3)

   137 
(13,3,4)

   149 
(15,5,5)

   145 
(16,4,4)

   157 
(10,2,2)

   158 
(12,3,3)

   159 
(12,3,3)

   160 
(13,4,3)

   162 
(14,4,4)

   163 
(14,5,3)

   165 
(16,5,4)

   169 
(16,6,4)

   172 
(17,5,5)

   175 
(17,5,5)

   188 
(16,4,4)

   189 
(18,5,5)

   182 
(21,6,6)

   184 
(20,6,7)

   190 
(20,6,6)

   178 
(20,6,6)

   191 
(21,7,6)

   197 
(26,8,8)

   193 
(24,8,8)

     198 
(30,10,10)

   194 
(25,8,8)

     199 
(36,12,12)

  107 
(9,2,2)

   133 
(11,4,4)

    9 
(4,0,1)

 
 
Figure 2.  One example from each family of digraphs.
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   21 
(6,1,1)

   23 
(2,2,4)

   22 
(2,3,3)

   24 
(5,1,2)

   25 
(5,2,1)

   26 
(4,2,2)

   28 
(2,4,2)

   27 
(6,1,1)

   29
(3,2,3)

   30 
(3,3,2)  

 
Figure 3.  Digraphs with four points and five arcs (no 2-cycles). 
 
 
Examining the six digraphs in the first row of Figure 2, there is a general increase in 
complexity as one goes from left to right, with one exception.  According to h values, 17 is 
out of place and should appear before 9.  This makes sense when one considers the 
complexity factors:  the numbers of points (n = 4), arcs (m = 5) and rings (r = 1) are the 
same, but 9 has a point of degree 3, whereas the maximum degree in 17 is 2.  Cyclicity 
increases in the series 1, 17, 21 and 31 as arcs are added.  Obviously, C = r = 0 for 1 and C 
= 0.25 (r = 1) for 17.  In 21 there is one 3-cycle and one 4-cycle, and C = 0.5 (r = 2).  There 
are two 3-cycles and one 4-cycle in 31, so that C = 0.75 (r = 3).  Complexity index h 
increases in this series, and a, b and c increase monotonically. 
 
Representative digraphs with one 2-cycle are collected in rows 2 and 3 of Figure 2, those 
with two of them in rows 4-6, three of them in rows 7 and 8, four in row 9, and five or six 
in row 10.  Complexity index h increases monotonically within each of these groupings 
except the first one, where 63 belongs between 42 and 45.  There are many examples of 
digraphs with the same value of h.  There are 13 degenerate pairs, (9, 35), (45, 51), (55, 
101), (83, 157), (113, 117), (127, 133), (137, 160), (145, 188), (149, 165), (162, 163), (172, 
175), (178, 190) and (182, 184), three triplets, (21, 63, 100), (31, 103, 105) and (67, 107, 
110), and one quadruplet, (90, 123, 158, 159).  The four digraphs in the quadruplet are 
differentiated by the total number of trees, TT = 51, 46, 30 and 43, respectively (Appendix 
6), but not by the number of kinds of trees, TS = 12, 11, 9 and 9, respectively, including T1 
≅ P1.  According to TT, the order of decreasing complexity is 90 > 123 > 159 > 158. 
 
The triples (a, b, c) provide an indication of the diversity within a family of digraphs.  
Except for one pair, (21, 27), all the digraphs in Figure 3 are uniquely characterized by 
their triples.  This is the most diverse such family among those of its size or larger.  For this 
application the order of numbers matters, e.g., (5,1,2) is not the same as (5,2,1). 
 
The triple (a, b, c) also reflects the diversity of connectivity within the corresponding 
digraph.  There are four classes of digraphs in Figure 3:  22 (2,3,3), 29 (3,2,3) and 30 
(3,3,2) are more diverse than 23 (2,2,4), 26 (4,2,2) and 28 (2,4,2), which are more diverse 
than 24 (5,1,2) and 25 (5,2,1); they in turn are more diverse than 21 (6,1,1) and 27 (6,1,1).   
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This order is confirmed by using Shannon’s ‘information entropy,’ H (equation 2) 
[Shannon & Weaver 1949], where Pi is the probability of semipath i, in this case Pa = a / h, 
Pb = b / h and Pc = c / h.  The values of H for the four classes are 1.56, 1.50, 1.30 and 1.06, 
respectively.  For this application the order of numbers in a triple does not matter. 
 

H = −∑ i Pi log2 Pi     (2) 
 
 
Which measure of complexity or diversity is most useful depends upon the specific 
application.  We are especially interested in molecular complexity and synthetic 
complexity, i.e., the complexities of molecular graphs and synthesis digraphs, respectively.  
The bonds in molecules are polarized according to the electronegativities of the atoms 
involved, which can be modeled by using arcs in the polarity digraph, where an arc goes 
from the less to the more electronegative atom.  Electronegativity is one of the main factors 
governing chemical reactivity, e.g., it predicts the site of attack by hydroxide on an ester, as 
illustrated in Figure 4.  (Strictly speaking, 1 and 3 are multidigraphs, vide supra.) 
 
Quantities a, b and c are not equally relevant to all problems.  A synthesis digraph 
represents a multistep synthetic plan.  For this application, only directed paths from the 
available starting materials to the desired product are fruitful [Bertz & Sommer 1993, Bertz 
1986], and a is the most important parameter.  As far as h is concerned, a similar quantity, 
η, the number of pairs of adjacent lines [Bertz 1981a,b], has been used as a predictor of 
relative synthetic efficiency [Bertz & Wright 1998, Bertz 1982, 1983]. 
 
 
3.  Conclusion 
 
We have demonstrated that the simplest approach to the complexity of graphs, the number 
of paths of length 2, gives useful results when extended to the complexity and diversity of 
digraphs.  As expected for such a primitive method, the discriminating power is not as 
great as more sophisticated approaches.  For some applications, the individual quantities a, 
b and c may be more useful than their sum, h.  All four invariants are involved in 
calculating the information entropy, H, which is a useful measure of diversity for digraphs. 
 
 

o

o

+
o

o
o

o

o

o

+ o

1 2 3  
 
Figure 4.  Polarity digraphs for the alkaline hydrolysis (−OH) of an ester, methyl acetate.  
Negative charges are not shown, but are associated with the lone pairs of electrons (loops). 
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Appendices 
 
Appendices 1-6 are available from the first author upon request. 
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