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In this paper a family of information I() with a parameter  is introduced and the reason why its coarse-grained information Ic() becomes to be independent of  near t=0, i.e. the probability density on the invariant set is uniformized and Ic() shows linearly time-dependent behavior, was theoretically examined. If the time-dependent probability measure of coarse-grained systems is described by a master equation (ME), a diffusion effect is necessarily brought into the systems, and the uniformization is caused by the information production originated from the diffusion effect. The production is completely corresponds to the entropy production, which is generally related to the phase space volume contraction rate in dissipative systems, and, therefore, the phenomena can be observed for a wide class of dynamical systems as irreversible processes go.
1.1.   Introduction

Macroscopic irreversibility, especially entropy production, has been a central issue in nonequilibrium statistical mechanics [1-4]. If, particularly, given dynamics is maintained to a nonequilibrium steady state with a dissipative mechanics and has a singular invariant measure, the Gibbs entropy cannot be defined. In this case, it has been argued that the coarse-grained entropy should be used [2,3]. It is well known that such a class of dynamics has the entropy production to be identified with the phase space volume contraction rate [4]. It can be regarded as the symbolic result of the connection that the entropy functional defined on the invariant set, proposed by Goldstein et al. [1] without any partitioning, has the increasing rate that agrees with the volume contraction rate.


Ishida and Kimoto [5] has introduced a family of information I() with a parameter  and numerically showed that its coarse-grained information Ic( approaches the unique line whose rate of increase is the ensemble-mean volume contraction rate K and whose initial value I is Ic(2)(0), which is independent of . The identification is observed near t=0 and indicates that the probability density is uniformized on the invariant set when given initial distributions are far from steady state. This cannot be explained by the characteristics of I), and is peculiar to the coarse-grained information Ic(). The property was discussed to be caused by the information production which is related to the entropy production on mesoscopic level formulation [4]. However the relation between the information production and microscopic entropy production has not been clarified yet.

In this paper the information production is theoretically related to the microscopic entropy production, which is related to the phase space volume contraction rate, provided coarse-grained probability measure is governed by a master equation. The characteristics of increasing rate of I) and Ic() has been already described in Ishida and Kimoto [5]. However we describe them in order to make this paper self-contained. 

1.2.   Information on invariant sets

Goldstein et al. [1] showed that the entropy functional [image: image1.wmf]increases linearly in time. Herein =(dx) is the invariant measure with respect to the volume measure dx and  is the continuous probability density for a given system. Here  may not be absolutely continuous and dx may not be preserved. In general the invariant set may be fractal sets of zero Lebesgue measure when the system considered is dissipative. If the flow is expressed as an ordinary equation system 
[image: image2.wmf] (v: smooth and differentiable), then the increasing rate of the functional K can be expressed as 
[image: image3.wmf][1]. 


In this paper a generalized form of the functional was introduced to investigate the coarse-graining effects on the probability density for dissipative flows, defined as:



[image: image4.wmf]
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where  is order, an arbitrary real number. If a vector field v is given and, therefore, the invariant measure  is fixed, then I() fulfills the so-called Khinchin’s axioms I, III and IV [6], with the 4th axiom restricted to independent subsystems. Moreover, I() is a monotonically increasing function of . Therefore it corresponds to the Rényi information [7] and I() can be also regarded as “-weighted” information of order  on the invariant set. I(1) corresponds to the above-mentioned entropy functional and this family of information is in its generalized form. 


The reason to introduce the information (1) is as follows. First the characteristics on the invariant set can be considered the representative ones of the given dynamical system because the set is on the most probable region that affects the behavior of macroscopic observables. Secondly, the information is independent of any kind of partitioning and is regarded as the typical characteristic when partitioning size =0. So this provides referential properties when compared with coarse-grained ones. Thirdly, the definition of Eq. (1) is relevant for any dissipative system in which the Lebesgue measure of the invariant set is 0. This property is essential to evaluate the information on the invariant set. As mentioned above, the information (1) is quite useful to examine a given dynamics for time-dependent characteristics of probability measure.

Differentiating Eq. (1) with respect to t, we find
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where 
[image: image6.wmf] is the ensemble mean of 
[image: image7.wmf] with respect to the partition function
[image: image8.wmf], i.e.
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For =1 it is obvious that the rate of increase (2) is constant at 
[image: image10.wmf]. In general this rate depends on  when [image: image11.wmf] is not spatially uniform.


The probability density can be expressed as:
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where
[image: image14.wmf]is the position of the reference point at t seconds before that is positioned on x at t=0, and 
[image: image15.wmf]is the value of 
[image: image16.wmf] at x. Now assuming the given system is ergodic, we can express
[image: image17.wmf] as:
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such that



[image: image19.wmf]
(5)

Substitution of Eqs. (3) and (4) in Eq. (1) leads to:
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This equation shows that I() depends on the initial probability density and, therefore, I() has different values for different initial distributions 


The 2nd term of the right hand side of Eq. (6) is monotonically increasing function of  Therefore it is clear that the term does not contribute to the identification of the information, i.e. the behavior for I() to be independent of , and even contributes to the differentiation of I() with . Moreover the term has the order of less than t1 from Eq. (5) and, therefore, the time derivative of Eq. (1) tends to:
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as 
[image: image22.wmf]. Hence for large t, I() behaves like a linear function of t. This is satisfied even for the case that 
[image: image23.wmf] is not uniform on the invariant set. In particular, time-derivative of I() is always K when =1 [1] or 
[image: image24.wmf] is constant on the invariant set from Eqs. (4) and (6). 

1.3.   Coarse graining and time-dependent probability measure

Actually, the numerical behavior of the information (1) differs from that of coarse-grained one as mentioned in Sec. 1.1 [5]. In this section we show that the coarse graining brings “diffusion” if the coarse-grained dynamics is governed by a master equation. And then the difference is shown to be caused by information production, one of the diffusion effects. We also show that the information production completely corresponds to entropy production as irreversible processes go.

1.3.1.   Master equation and another expression

First of all, we divide the phase space into boxes of equal size . Providing the position of reference particles in the same box cannot be distinguished with each other, the information about which boxes the each particle will move within a given time span is quite useless. From this “coarse-grained” view point it is natural that the equation for the evolution of a probability measure pi is assumed to be governed by the following master equation (ME) [8]:



[image: image25.wmf]
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Here pi denotes the probability measure on the i-th box, Wij the transition probability from the j-th box to the i-th one. The region where the steady solution of this equation system is nonzero corresponds to the so-called relative global attractor for the size . If the computational domain contains the invariant set, then the relative global attractor is identical with the invariant set [9]. The convergence problem of Eq. (8) with respect to the partition size  has been resolved for natural invariant measure [9], SRB measure, and, therefore, we can deduce that any equation of motion for the coarse-grained probability measure has the form of Eq. (8) provided, at least,  is sufficiently small.

In Eq. (8) the transition probability Wij can be expressed as follows:
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Herein Wij(t) denotes the transition probability from the j-th box to the i-th one within a finite time range t; [image: image29.wmf]is the velocity component of v in the direction from the j-th box to the i-th one; Sij+ is the area of
[image: image30.wmf] on the i-j box boundary; mj(=n, where n is number of dimensions) is the volume of the j-th box. In this relation it is worthwhile noting that Wij equals zero when the i-th box is apart from the j-th box because Wij(t) becomes zero for sufficiently small t. Equation (9) is satisfied only when the i- and j-th boxes contact with each other. 


Substituting from the relation of Tayler expansion around the center of i-j box boundary in Eq. (9), we obtain the following relation:
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where subscript c denotes the center of i-j box boundary, and n denotes the directional differential with respect to the direction from the j-th box to the i-th one. Hij is the term of o(1), relating to the distribution of Sij+ on i-j box boundary. However the term equals zero for almost the entire set of i and j when  is sufficiently small. Wij’ is the coefficient of the discretized continuity equation made by the 1st-order upwind difference scheme in the conservative form (UDS) [10] as follows:
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Consequently the solution of the UDS (i) numerically coincides with that of the ME (pi) provided  is sufficiently small and their initial distribution is the same. Therefore, the ME (8) is numerically equivalent to the UDS (11). This fact does not assert that the time-dependent measure obtained by solving Eq. (8) can be expressed by a probability density for small , i.e. the measure has an absolute continuous density. We can easily ascertain that such a relation between the differenced continuity equation and the ME is not obtained when the continuity equation is discretized by higher-order upwind difference schemes. Hence it should be emphasized that this coincidence is only numerical. In general solving the UDS requires less computer time and storage than solving the ME and, therefore, the UDS is very useful. 

1.3.2.   Increasing rate of coarse-grained information

Next, the coarse-grained information Ic corresponding to Eq. (1) is defined as follows:
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where pj* is the invariant measure on the j-th box. Differentiating Eq. (12) with respect to time t and approximating Wij with Wij’, we have the coarse-grained relation corresponding to Eq. (2) as follows:
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where
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Herein j=pj/mj and k+, k- are the respective values at the larger- and smaller-side box next to the j-th box in the k direction. Also, vk+, vk- are k-directional velocity components at the center of the k-directional larger- and smaller-side boundary of the j-th box, respectively. In Eq. (13) the possible summation with k should be performed. Cj and Dj formally agree with the discretized expressions of a convection term C* and a diffusion term D*, respectively, defined as follows:
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Hence it is clear that Cj corresponds to the normal convection term of the continuity equation and K0() becomes equal to the right hand side of Eq. (2) when =0. Dj is the additional term that brings the diffusion effect caused by the coarse graining. The diffusion coefficient in the k direction 
[image: image43.wmf] coincides with the 2nd moment of the transition probability in the k direction divided by 2 evaluated by using Eq. (10), provided the variation of the moving distance of the reference particle is ignored when the particle is in the same box, and the distance is  and positive if and only if the particle moves from a box to a neighboring box in the k direction. 


The term K1() in Eq. (13) can be divided into two parts as follows:
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where



[image: image45.wmf]




[image: image46.wmf]




[image: image47.wmf]


Herein K11() and K12() coincide with the discretized forms of the following terms:
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From Eq. (16) we can conclude that K11() and K12() correspond to the additional rate of increase caused by the information flow and the information production, respectively. It has been numerically ascertained that K12() is dominant near t=0 and contributes to the above-mentioned identification of the information, i.e. the behavior for Ic() to be independent of  [5]. The identification means the uniformization of probability density on the invariant set. 

As K12() is positive for <2, negative for >2, and zero at =2, the family of information approaches the line of Ic(2). Therefore Ic() shows the identical time variation as far as Ic(2)(0) is identical even if the corresponding initial distributions are different. Consequently the uniformization is expected to explain the mechanism that makes the microscopic level difference of initial distribution lose and realizes the same macroscopic unsteady state if its macroscopic initial state Ic(2)(0) is identical.
1.3.3.   Entropy production and phase-space volume contraction rate


The remaining problem is whether or not the uniformization is universal. Especially the relation between the information production and the irreversible thermodynamics has not been clarified yet. In this section the information production is shown to be related to the entropy production as irreversible processes go.


In steady state the coarse-grained information Ic() is the same as the conventional coarse-grained entropy times –1. Considering the probability measure is zero outside the invariant set and the surface integral of flux is equal to the volume integral of the divergence of the flux in discretized form, we obtain:
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where Kc equals the phase space volume contraction rate evaluated on the coarse-grained system. On the other hand, from Eqs. (13) and (14), K0() and K1() clearly corresponds to the increasing rate of the information (12) of the zeroth- and 1st-order of , respectively and each term should be zero in steady state when  is sufficiently small, i.e. K0()=K1()=0. Hence from Eq. (17) we obtain
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As shown in Eq. (16) the term K12(1) formally coincides with the discritezed expression of the following term:
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Now we introduce mesoscopic re-divided boxes of equal size l. Considering 
[image: image54.wmf] is equal to the 2nd moment of the transition probability in the k direction divided by 2, we find that its probability-measure-weighted value in a box
[image: image55.wmf]is equal to the macroscopic diffusion coefficient Dk defined at the mesoscopic box from the Green-Kubo formula [11]. If the macroscopic spatial variation of  and its gradient are small enough from the view point of the micro- and mesoscopic level scale, the volume-averaged value of Eq. (19) on V becomes as follows:
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s is clearly the phenomenological entropy production and, therefore, K12(1) is shown to be the entropy production on the entire phase space in steady state. As the information production term K12() is generalized one from the entropy production term (19), the uniformization of probability density on the invariant set can be observed for a wide class of dynamical systems as irreversible processes go.

On the other hand, Eq. (18) means that the entropy production is equal to the phase space volume contraction rate, which has been ascertained in the dissipative, thermostatted system [4]. Therefore, the coarse-grained expression by using the master equation (8) is ascertained to be relevant to dissipative systems.

1.4.   Conclusions

In this paper a family of information I() with a parameter  is introduced and the reason why its coarse-grained information Ic() becomes to be independent of  near t=0, i.e. the probability density on the invariant set is uniformized and Ic() shows linearly time-dependent behavior, was theoretically examined. The main results are as follows: (1) If the time-dependent probability measure of coarse-grained systems is described by a master equation (ME), a diffusion effect is necessarily brought into the systems. When partition size  is sufficiently small, the ME is numerically equivalent to the continuity equation discretized by the 1st-order upwind difference scheme in the conservative form (UDS). The ME or UDS has the physically relevant characteristic that the entropy production is related to the phase space volume contraction rate in dissipative systems. (2) The above-mentioned uniformization is caused by information production, which is completely corresponds to the entropy production. Therefore the phenomena can be observed for a wide class of dynamical systems as irreversible processes go.
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